IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v12y2018i4p1223-1231.html
   My bibliography  Save this article

Patent citation spectroscopy (PCS): Online retrieval of landmark patents based on an algorithmic approach

Author

Listed:
  • Comins, Jordan A.
  • Carmack, Stephanie A.
  • Leydesdorff, Loet

Abstract

One essential component in the construction of patent landscapes in biomedical research and development (R&D) is identifying the most seminal patents. Hitherto, the identification of seminal patents required subject matter experts within biomedical areas. In this article, we report an analytical method and tool, Patent Citation Spectroscopy (PCS), for the online identification of landmark patents in user-specified areas of biomedical innovation. Using USPTO data, PCS mines the cited references within large sets of patents at the internet and provides an estimate of the historically most impactful prior work. We show the efficacy of PCS in three case studies of biomedical innovation with clinical relevance: (1) RNA interference (RNAi), (2) cholesterol and (3) cloning. PCS mined and analyzed cited references related to patents on RNA interference and correctly identified the foundational patent of this technology, as independently reported by subject matter experts on RNAi intellectual property. Secondly, we apply PCS to a broad set of patents dealing with cholesterol – a case study chosen to reflect a more general, as opposed to expert, patent search query. PCS mined through cited references and identified the seminal patent as that for Lipitor, the groundbreaking medication for treating high cholesterol as well as the pair of patents underlying Repatha. The final case study, cloning, highlights some of the advantages conferred by the PCS methodology in identifying seminal patents. These cases suggest that PCS provides a useful method for identifying seminal patents in areas of biomedical innovation and therapeutics. The interactive tool is free-to-use at: http://www.leydesdorff.net/comins/pcs/index.html.

Suggested Citation

  • Comins, Jordan A. & Carmack, Stephanie A. & Leydesdorff, Loet, 2018. "Patent citation spectroscopy (PCS): Online retrieval of landmark patents based on an algorithmic approach," Journal of Informetrics, Elsevier, vol. 12(4), pages 1223-1231.
  • Handle: RePEc:eee:infome:v:12:y:2018:i:4:p:1223-1231
    DOI: 10.1016/j.joi.2018.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157717304492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2018.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Werner Marx & Lutz Bornmann & Andreas Barth & Loet Leydesdorff, 2014. "Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS)," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 751-764, April.
    2. Jordan A. Comins & Loet Leydesdorff, 2017. "Citation algorithms for identifying research milestones driving biomedical innovation," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1495-1504, March.
    3. Alcácer, Juan & Gittelman, Michelle & Sampat, Bhaven, 2009. "Applicant and examiner citations in U.S. patents: An overview and analysis," Research Policy, Elsevier, vol. 38(2), pages 415-427, March.
    4. Daniele Rotolo & Ismael Rafols & Michael M. Hopkins & Loet Leydesdorff, 2017. "Strategic intelligence on emerging technologies: Scientometric overlay mapping," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(1), pages 214-233, January.
    5. Pao-Long Chang & Chao-Chan Wu & Hoang-Jyh Leu, 2010. "Using patent analyses to monitor the technological trends in an emerging field of technology: a case of carbon nanotube field emission display," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 5-19, January.
    6. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    7. Iain M. Cockburn & Samuel Kortum & Scott Stern, 2002. "Are All Patent Examiners Equal? The Impact of Examiner Characteristics," NBER Working Papers 8980, National Bureau of Economic Research, Inc.
    8. Jordan A. Comins & Thomas W. Hussey, 2015. "Detecting seminal research contributions to the development and use of the global positioning system by reference publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(2), pages 575-580, August.
    9. Norman Kaplan, 1965. "The norms of citation behavior: Prolegomena to the footnote," American Documentation, Wiley Blackwell, vol. 16(3), pages 179-184, July.
    10. Werner Marx & Lutz Bornmann, 2014. "Tracing the origin of a scientific legend by reference publication year spectroscopy (RPYS): the legend of the Darwin finches," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 839-844, June.
    11. Comins, Jordan A. & Hussey, Thomas W., 2015. "Compressing multiple scales of impact detection by Reference Publication Year Spectroscopy," Journal of Informetrics, Elsevier, vol. 9(3), pages 449-454.
    12. Jing Ma & Alan L. Porter, 2015. "Analyzing patent topical information to identify technology pathways and potential opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 811-827, January.
    13. Bakthavachalam Elango & Lutz Bornmann & Govindaraju Kannan, 2016. "Detecting the historical roots of tribology research: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 305-313, April.
    14. Loet Leydesdorff & Floortje Alkemade & Gaston Heimeriks & Rinke Hoekstra, 2015. "Patents as instruments for exploring innovation dynamics: geographic and technological perspectives on “photovoltaic cells”," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 629-651, January.
    15. K. Brad Wray & Lutz Bornmann, 2015. "Philosophy of science viewed through the lense of “Referenced Publication Years Spectroscopy” (RPYS)," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 1987-1996, March.
    16. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    17. Breitzman, Anthony & Thomas, Patrick, 2015. "The Emerging Clusters Model: A tool for identifying emerging technologies across multiple patent systems," Research Policy, Elsevier, vol. 44(1), pages 195-205.
    18. Leydesdorff, Loet & Bornmann, Lutz & Marx, Werner & Milojević, Staša, 2014. "Referenced Publication Years Spectroscopy applied to iMetrics: Scientometrics, Journal of Informetrics, and a relevant subset of JASIST," Journal of Informetrics, Elsevier, vol. 8(1), pages 162-174.
    19. Thor, Andreas & Marx, Werner & Leydesdorff, Loet & Bornmann, Lutz, 2016. "Introducing CitedReferencesExplorer (CRExplorer): A program for reference publication year spectroscopy with cited references standardization," Journal of Informetrics, Elsevier, vol. 10(2), pages 503-515.
    20. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai, Kuei-Kuei & Bhatt, Priyanka C. & Kumar, Vimal & Chen, Hsueh-Chen & Chang, Yu-Hsin & Su, Fang-Pei, 2021. "Identifying the impact of patent family on the patent trajectory: A case of thin film solar cells technological trajectories," Journal of Informetrics, Elsevier, vol. 15(2).
    2. Jiang, Hongxun & Fan, Shaokun & Zhang, Nan & Zhu, Bin, 2023. "Deep learning for predicting patent application outcome: The fusion of text and network embeddings," Journal of Informetrics, Elsevier, vol. 17(2).
    3. Xin Li & Qiang Yao & Xuli Tang & Qian Li & Mengjia Wu, 2020. "How to investigate the historical roots and evolution of research fields in China? A case study on iMetrics using RootCite," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1253-1274, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    2. Xin Li & Qiang Yao & Xuli Tang & Qian Li & Mengjia Wu, 2020. "How to investigate the historical roots and evolution of research fields in China? A case study on iMetrics using RootCite," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1253-1274, November.
    3. Andreas Thor & Lutz Bornmann & Werner Marx & Rüdiger Mutz, 2018. "Identifying single influential publications in a research field: new analysis opportunities of the CRExplorer," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 591-608, July.
    4. Werner Marx & Lutz Bornmann, 2016. "Change of perspective: bibliometrics from the point of view of cited references—a literature overview on approaches to the evaluation of cited references in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 1397-1415, November.
    5. McLevey, John & McIlroy-Young, Reid, 2017. "Introducing metaknowledge: Software for computational research in information science, network analysis, and science of science," Journal of Informetrics, Elsevier, vol. 11(1), pages 176-197.
    6. Thor, Andreas & Marx, Werner & Leydesdorff, Loet & Bornmann, Lutz, 2016. "Introducing CitedReferencesExplorer (CRExplorer): A program for reference publication year spectroscopy with cited references standardization," Journal of Informetrics, Elsevier, vol. 10(2), pages 503-515.
    7. Werner Marx & Robin Haunschild & Andreas Thor & Lutz Bornmann, 2017. "Which early works are cited most frequently in climate change research literature? A bibliometric approach based on Reference Publication Year Spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 335-353, January.
    8. Jordan A. Comins & Loet Leydesdorff, 2017. "Citation algorithms for identifying research milestones driving biomedical innovation," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1495-1504, March.
    9. Ying Huang & Donghua Zhu & Yue Qian & Yi Zhang & Alan L. Porter & Yuqin Liu & Ying Guo, 2017. "A hybrid method to trace technology evolution pathways: a case study of 3D printing," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 185-204, April.
    10. Werner Marx & Robin Haunschild & Bernie French & Lutz Bornmann, 2017. "Slow reception and under-citedness in climate change research: A case study of Charles David Keeling, discoverer of the risk of global warming," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 1079-1092, August.
    11. Loet Leydesdorff & Jordan A. Comins & Aaron A. Sorensen & Lutz Bornmann & Iina Hellsten, 2016. "Cited references and Medical Subject Headings (MeSH) as two different knowledge representations: clustering and mappings at the paper level," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2077-2091, December.
    12. Bakthavachalam Elango & Lutz Bornmann & Govindaraju Kannan, 2016. "Detecting the historical roots of tribology research: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 305-313, April.
    13. Jianhua Hou & Xiucai Yang & Yang Zhang, 2023. "The effect of social media knowledge cascade: an analysis of scientific papers diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5169-5195, September.
    14. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    15. K. Brad Wray & Lutz Bornmann, 2015. "Philosophy of science viewed through the lense of “Referenced Publication Years Spectroscopy” (RPYS)," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 1987-1996, March.
    16. Jordan A. Comins & Thomas W. Hussey, 2015. "Detecting seminal research contributions to the development and use of the global positioning system by reference publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(2), pages 575-580, August.
    17. Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    18. Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    19. Daria Maltseva & Vladimir Batagelj, 2020. "iMetrics: the development of the discipline with many names," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 313-359, October.
    20. Kuan, Chung-Huei & Lin, Jia-Tian & Chen, Dar-Zen, 2021. "Characterizing Patent Assignees by Their Structural Positions Relative to a Field’s Evolutionary Trajectory," Journal of Informetrics, Elsevier, vol. 15(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:12:y:2018:i:4:p:1223-1231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.