IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v37y2022ics1874548222000142.html
   My bibliography  Save this article

Estimating the frequency of cyber threats to nuclear power plants based on operating experience analysis

Author

Listed:
  • Han, Sang Min
  • Lee, Chanyoung
  • Seong, Poong Hyun

Abstract

The necessity and importance of cyber risk assessments at nuclear power plants is increasingly being recognized in recent times. However, the cyber risk assessment methods developed thus far have focused on engineering evaluations and expert judgments. Moreover, there is no available probabilistic database of cyber threats for nuclear power plants. In this study the frequencies of cyber threats were estimated based on operating experience analysis. The operating experiences are grouped by their characteristics to suggest the list of cyber threats, and the frequency of each cyber threat is calculated by two-stage Bayesian updates. This research is significant because it is the first study on a probabilistic approach to estimate cyber threats. Furthermore, this research offers the advantage of being able to update the threat frequencies with additional data accumulation. We expect that this approach can also be applied to probabilistic safety assessment, which is the most widely used method for nuclear power plant risk assessment.

Suggested Citation

  • Han, Sang Min & Lee, Chanyoung & Seong, Poong Hyun, 2022. "Estimating the frequency of cyber threats to nuclear power plants based on operating experience analysis," International Journal of Critical Infrastructure Protection, Elsevier, vol. 37(C).
  • Handle: RePEc:eee:ijocip:v:37:y:2022:i:c:s1874548222000142
    DOI: 10.1016/j.ijcip.2022.100523
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548222000142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2022.100523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nai Fovino, Igor & Masera, Marcelo & De Cian, Alessio, 2009. "Integrating cyber attacks within fault trees," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1394-1402.
    2. Kim, Hee Eun & Son, Han Seong & Kim, Jonghyun & Kang, Hyun Gook, 2017. "Systematic development of scenarios caused by cyber-attack-induced human errors in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 290-301.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    2. Bolbot, Victor & Theotokatos, Gerasimos & Bujorianu, Luminita Manuela & Boulougouris, Evangelos & Vassalos, Dracos, 2019. "Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 179-193.
    3. Kriaa, Siwar & Pietre-Cambacedes, Ludovic & Bouissou, Marc & Halgand, Yoran, 2015. "A survey of approaches combining safety and security for industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 156-178.
    4. SICARD, Franck & ZAMAI, Éric & FLAUS, Jean-Marie, 2019. "An approach based on behavioral models and critical states distance notion for improving cybersecurity of industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 584-603.
    5. Piètre-Cambacédès, L. & Bouissou, M., 2013. "Cross-fertilization between safety and security engineering," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 110-126.
    6. Georgios Kavallieratos & Sokratis Katsikas & Vasileios Gkioulos, 2020. "Cybersecurity and Safety Co-Engineering of Cyberphysical Systems—A Comprehensive Survey," Future Internet, MDPI, vol. 12(4), pages 1-17, April.
    7. Rick A. Jones & Barry Horowitz, 2012. "A System‐Aware Cyber Security architecture," Systems Engineering, John Wiley & Sons, vol. 15(2), pages 225-240, June.
    8. Di Wu & Xiangbin Yan & Rui Peng & Shaomin Wu, 2020. "Optimal defence-attack strategies between one defender and two attackers," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(11), pages 1830-1846, November.
    9. Patriarca, Riccardo & Simone, Francesco & Di Gravio, Giulio, 2022. "Modelling cyber resilience in a water treatment and distribution system," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    10. Wang, Wei & Di Maio, Francesco & Zio, Enrico, 2020. "Considering the human operator cognitive process for the interpretation of diagnostic outcomes related to component failures and cyber security attacks," Reliability Engineering and System Safety, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:37:y:2022:i:c:s1874548222000142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.