IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip2p1505-1514.html
   My bibliography  Save this article

Rapid-compression machine studies on two-stage ignition characteristics of hydrocarbon autoignition and an investigation of new gasoline surrogates

Author

Listed:
  • Chung, Jinhwa
  • Lee, Seunghyeon
  • An, Hyunsoo
  • Song, Soonho
  • Chun, Kwang Min

Abstract

Iso-octane-based surrogates have been widely used to represent gasoline fuel combustion. The surrogate's autoignition characteristics have been of particular interest due to combustion issues associated with spark-ignition engine knocking or controlled autoignition. In this study, the autoignition of several hydrocarbons was measured and analyzed using a rapid compression machine. The two-stage ignition characteristics of gasoline and iso-octane were compared and the differences analyzed from the viewpoint of the effect of the fuels' chemical structure on low-temperature oxidation processes and internal isomerization. Finally, the reliability of iso-octane as a gasoline surrogate was examined, and other surrogates were suggested. Our results indicated that surrogates containing ∼20% cyclic alkenes were better able to simulate gasoline autoignition, including two-stage ignition characteristics.

Suggested Citation

  • Chung, Jinhwa & Lee, Seunghyeon & An, Hyunsoo & Song, Soonho & Chun, Kwang Min, 2015. "Rapid-compression machine studies on two-stage ignition characteristics of hydrocarbon autoignition and an investigation of new gasoline surrogates," Energy, Elsevier, vol. 93(P2), pages 1505-1514.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:1505-1514
    DOI: 10.1016/j.energy.2015.09.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215012876
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.09.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Cheng & Yang, Fuyuan & Ouyang, Minggao & Gao, Guojing & Chen, Lin, 2013. "Combustion mode switching control in a HCCI diesel engine," Applied Energy, Elsevier, vol. 110(C), pages 190-200.
    2. Chen, Tao & Xie, Hui & Li, Le & Zhang, Lianfang & Wang, Xinyan & Zhao, Hua, 2014. "Methods to achieve HCCI/CAI combustion at idle operation in a 4VVAS gasoline engine," Applied Energy, Elsevier, vol. 116(C), pages 41-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    2. Yin, Geyuan & Hu, Erjiang & Huang, Shihan & Ku, Jinfeng & Li, Xiaojie & Xu, Zhaohua & Huang, Zuohua, 2019. "Experimental and kinetic study of diisobutylene isomers in laminar flames," Energy, Elsevier, vol. 170(C), pages 537-545.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Desantes, J.M. & García-Oliver, J.M. & Vera-Tudela, W. & López-Pintor, D. & Schneider, B. & Boulouchos, K., 2016. "Study of the auto-ignition phenomenon of PRFs under HCCI conditions in a RCEM by means of spectroscopy," Applied Energy, Elsevier, vol. 179(C), pages 389-400.
    2. Zhou, Lei & Song, Yuntong & Hua, Jianxiong & Liu, Fengnian & Wei, Haiqiao, 2020. "Effects of miller cycle strategies on combustion characteristics and knock resistance in a spark assisted compression ignition (SACI) engine," Energy, Elsevier, vol. 206(C).
    3. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Song, Kang & Wang, Xinyan & Xie, Hui, 2018. "Trade-off on fuel economy, knock, and combustion stability for a stratified flame-ignited gasoline engine," Applied Energy, Elsevier, vol. 220(C), pages 437-446.
    5. Wang, Jinli & Yang, Fuyuan & Ouyang, Minggao, 2015. "Dieseline fueled flexible fuel compression ignition engine control based on in-cylinder pressure sensor," Applied Energy, Elsevier, vol. 159(C), pages 87-96.
    6. Yang, Fuyuan & Wang, Jinli & Gao, Guojing & Ouyang, Minggao, 2014. "In-cycle diesel low temperature combustion control based on SOC detection," Applied Energy, Elsevier, vol. 136(C), pages 77-88.
    7. Komninos, N.P. & Rakopoulos, C.D., 2016. "Heat transfer in hcci phenomenological simulation models: A review," Applied Energy, Elsevier, vol. 181(C), pages 179-209.
    8. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & Zhang, Qiankun & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion – Part Ⅰ: Characteristics from medium to ," Energy, Elsevier, vol. 246(C).
    9. Asad, Usman & Zheng, Ming, 2014. "Exhaust gas recirculation for advanced diesel combustion cycles," Applied Energy, Elsevier, vol. 123(C), pages 242-252.
    10. Komninos, N.P., 2015. "The effect of thermal stratification on HCCI combustion: A numerical investigation," Applied Energy, Elsevier, vol. 139(C), pages 291-302.
    11. Neshat, Elaheh & Saray, Rahim Khoshbakhti & Hosseini, Vahid, 2016. "Effect of reformer gas blending on homogeneous charge compression ignition combustion of primary reference fuels using multi zone model and semi detailed chemical-kinetic mechanism," Applied Energy, Elsevier, vol. 179(C), pages 463-478.
    12. Wu, Zhijun & Kang, Zhe & Deng, Jun & Hu, Zongjie & Li, Liguang, 2016. "Effect of oxygen content on n-heptane auto-ignition characteristics in a HCCI engine," Applied Energy, Elsevier, vol. 184(C), pages 594-604.
    13. Zhou, Lei & Hua, Jianxiong & Liu, Feng & Liu, Fengnian & Feng, Dengquan & Wei, Haiqiao, 2018. "Effect of internal exhaust gas recirculation on the combustion characteristics of gasoline compression ignition engine under low to idle conditions," Energy, Elsevier, vol. 164(C), pages 306-315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:1505-1514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.