IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip2p1290-1297.html
   My bibliography  Save this article

Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids

Author

Listed:
  • Kim, Hyun Jin
  • Lee, Seung-Hyun
  • Lee, Ji-Hwan
  • Jang, Seok Pil

Abstract

The suspension stability and thermal conductivity of water-based bohemite alumina nanofluids created using nanoparticles of various shapes (brick, platelet, and blade) at concentrations from 0.3 vol% to 7.0 vol% were theoretically and experimentally investigated. To quantitatively examine the effect of nanoparticle shape on suspension stability, this study uses the laser-scattering method rather than the zeta-potential measurement or the sedimentation test because both the zeta-potential and sedimentation tests cannot systematically represent the suspension stability of nanofluids. Using the DLVO (Derjaguin and Landau, Verwey and Overbeek) theory, we explain why the suspension stability varies with nanoparticle shape despite similar volume fraction of nanoparticles, pH, and temperature. The thermal conductivities are also measured by the transient hot wire method, which was developed in house. Experimental data are compared with theoretical results predicted by the Hamilton–Crosser model, which considers the effect of nanoparticle shape. It is shown that the model cannot predict nanofluids thermal conductivity relative to nanoparticle shape. Finally it is clearly shown that the thermal conductivity of nanofluids strongly depends on the suspension stability of bohemite alumina with various shapes.

Suggested Citation

  • Kim, Hyun Jin & Lee, Seung-Hyun & Lee, Ji-Hwan & Jang, Seok Pil, 2015. "Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids," Energy, Elsevier, vol. 90(P2), pages 1290-1297.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1290-1297
    DOI: 10.1016/j.energy.2015.06.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215008403
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad, 2018. "How to improve the thermal performance of pulsating heat pipes: A review on working fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 630-638.
    2. Manikandan, S. & Rajan, K.S., 2016. "Sand-propylene glycol-water nanofluids for improved solar energy collection," Energy, Elsevier, vol. 113(C), pages 917-929.
    3. Moucun Yang & Sa Wang & Yuezhao Zhu & Robert A. Taylor & M.A. Moghimi & Yinfeng Wang, 2020. "Thermal Stability and Performance Testing of Oil-based CuO Nanofluids for Solar Thermal Applications," Energies, MDPI, vol. 13(4), pages 1-16, February.
    4. Sadegh Hosseini, Seyed Mohammad & Dehaj, Mohammad Shafiey, 2021. "An experimental study on energetic performance evaluation of a parabolic trough solar collector operating with Al2O3/water and GO/water nanofluids," Energy, Elsevier, vol. 234(C).
    5. Garud, Kunal Sandip & Lee, Moo-Yeon, 2022. "Thermodynamic, environmental and economic analyses of photovoltaic/thermal-thermoelectric generator system using single and hybrid particle nanofluids," Energy, Elsevier, vol. 255(C).
    6. Lee, Seung-Hyun & Choi, Tae Jong & Jang, Seok Pil, 2016. "Thermal efficiency comparison: Surface-based solar receivers with conventional fluids and volumetric solar receivers with nanofluids," Energy, Elsevier, vol. 115(P1), pages 404-417.
    7. Xia Chen & Mingxuan Zhang & Yuting Wu & Chongfang Ma, 2023. "Advances in High-Temperature Molten Salt-Based Carbon Nanofluid Research," Energies, MDPI, vol. 16(5), pages 1-28, February.
    8. Wang, Jin & Yang, Xian & Klemeš, Jiří Jaromír & Tian, Ke & Ma, Ting & Sunden, Bengt, 2023. "A review on nanofluid stability: preparation and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1290-1297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.