IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v88y2015icp697-702.html
   My bibliography  Save this article

Fast pyrolysis of corn stover using ZnCl2: Effect of washing treatment on the furfural yield and solvent extraction of furfural

Author

Listed:
  • Oh, Seung-Jin
  • Choi, Gyung-Goo
  • Kim, Joo-Sik

Abstract

To produce a bio-oil having a high concentration of furfural, corn stover was fast-pyrolyzed using ZnCl2 in a fluidized bed reactor at 330–430 °C. The effects of various parameters such as reaction temperature, water- and acid-washing prior to pyrolysis, and ZnCl2 content on the product and furfural yields were investigated. Moreover, solvent extraction was conducted using toluene at different mass ratios of bio-oil/toluene to recover furfural from the obtained bio-oil. The maximum yield of bio-oil was 59 wt%. The bio-oil mainly comprised acetic acid, α-hydroxyketones, and furfural. The maximum furfural yield was 11.5 wt% when the feed material was water-washed, impregnated with 18.5 wt% ZnCl2, and pyrolyzed. Although acid-washing removed alkali and alkaline earth metals much more efficiently than water-washing, water-washing was better than acid-washing for the furfural production. Toluene extraction was very effective to recover furfural from bio-oil. The maximum recovery rate (82%) was achieved at a bio-oil/toluene ratio of 1:4.

Suggested Citation

  • Oh, Seung-Jin & Choi, Gyung-Goo & Kim, Joo-Sik, 2015. "Fast pyrolysis of corn stover using ZnCl2: Effect of washing treatment on the furfural yield and solvent extraction of furfural," Energy, Elsevier, vol. 88(C), pages 697-702.
  • Handle: RePEc:eee:energy:v:88:y:2015:i:c:p:697-702
    DOI: 10.1016/j.energy.2015.05.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215007033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mooktzeng Lim & Ee Sann Tan, 2023. "Techno-Economic Feasibility Study for Organic and Plastic Waste Pyrolysis Pilot Plant in Malaysia," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    2. Qiaoqiao Zhou & Jinxing Gu & Jingwei Wang & Anthony Girolamo & Sasha Yang & Lian Zhang, 2023. "High production of furfural by flash pyrolysis of C6 sugars and lignocellulose by Pd-PdO/ZnSO4 catalyst," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Nzihou, Ange & Stanmore, Brian & Lyczko, Nathalie & Minh, Doan Pham, 2019. "The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review," Energy, Elsevier, vol. 170(C), pages 326-337.
    4. Huang, Y.W. & Chen, M.Q. & Li, Y. & Guo, J., 2016. "Modeling of chemical exergy of agricultural biomass using improved general regression neural network," Energy, Elsevier, vol. 114(C), pages 1164-1175.
    5. Xing, Shiyou & Yuan, Haoran & Huhetaoli, & Qi, Yujie & Lv, Pengmei & Yuan, Zhenhong & Chen, Yong, 2016. "Characterization of the decomposition behaviors of catalytic pyrolysis of wood using copper and potassium over thermogravimetric and Py-GC/MS analysis," Energy, Elsevier, vol. 114(C), pages 634-646.
    6. Oh, Seung-Jin & Choi, Gyung-Goo & Kim, Joo-Sik, 2016. "Characteristics of bio-oil from the pyrolysis of palm kernel shell in a newly developed two-stage pyrolyzer," Energy, Elsevier, vol. 113(C), pages 108-115.
    7. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:88:y:2015:i:c:p:697-702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.