IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p2434-2439.html
   My bibliography  Save this article

Estimation of maximum steam pressure by a mathematical linear technique

Author

Listed:
  • Kralj, Anita Kovač

Abstract

This paper presents a method for estimating the maximum pressure of steam which can be generated in recovering heat from individual processes, by partial linearization of the grand-composite curve. The technique is based on the pinch-analysis method by using a grand-composite curve (GCC), which can be approximated by using a mathematical function. The mathematical linear technique is composed of two steps:

Suggested Citation

  • Kralj, Anita Kovač, 2011. "Estimation of maximum steam pressure by a mathematical linear technique," Energy, Elsevier, vol. 36(5), pages 2434-2439.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2434-2439
    DOI: 10.1016/j.energy.2011.01.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211000302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.01.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vargas, J.V.C. & Bejan, A., 2000. "Thermodynamic optimization of the match between two streams with phase change," Energy, Elsevier, vol. 25(1), pages 15-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toffolo, Andrea & Lazzaretto, Andrea & von Spakovsky, Michael R., 2012. "On the nature of the heat transfer feasibility constraint in the optimal synthesis/design of complex energy systems," Energy, Elsevier, vol. 41(1), pages 236-243.
    2. Kovac Kralj, Anita, 2015. "Recovering energy from flue gas by using a utilities grid technique," Energy, Elsevier, vol. 86(C), pages 85-92.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zebian, Hussam & Mitsos, Alexander, 2012. "A double-pinch criterion for regenerative Rankine cycles," Energy, Elsevier, vol. 40(1), pages 258-270.
    2. Wang, Yi-Hsien & Yang, Yue-Tzu, 2011. "Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink," Energy, Elsevier, vol. 36(8), pages 5214-5224.
    3. Ho, Tony & Mao, Samuel S. & Greif, Ralph, 2012. "Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy," Energy, Elsevier, vol. 42(1), pages 213-223.
    4. Kovac Kralj, Anita, 2015. "Recovering energy from flue gas by using a utilities grid technique," Energy, Elsevier, vol. 86(C), pages 85-92.
    5. Revellin, Rémi & Lips, Stéphane & Khandekar, Sameer & Bonjour, Jocelyn, 2009. "Local entropy generation for saturated two-phase flow," Energy, Elsevier, vol. 34(9), pages 1113-1121.
    6. Manjunath, K. & Kaushik, S.C., 2014. "Second law thermodynamic study of heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 348-374.
    7. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2021. "Thermodynamic optimization of the superheater during switching the load transient processes," Energy, Elsevier, vol. 218(C).
    8. Ho, Tony & Mao, Samuel S. & Greif, Ralph, 2012. "Increased power production through enhancements to the Organic Flash Cycle (OFC)," Energy, Elsevier, vol. 45(1), pages 686-695.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2434-2439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.