Catalytic conversion of carbon dioxide into cyclic carbonates and fuels over metal ionic liquid complexes: Experimental and DFT studies
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.136488
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Liu, Fa-Ping & Li, Ai-Rong & Wang, Cheng & Ma, Yu-Ling, 2023. "Controlling and tuning CO2 hydrate nucleation and growth by metal-based ionic liquids," Energy, Elsevier, vol. 269(C).
- Kyu Min Lee & Jun Ho Jang & Mani Balamurugan & Jeong Eun Kim & Young In Jo & Ki Tae Nam, 2021. "Redox-neutral electrochemical conversion of CO2 to dimethyl carbonate," Nature Energy, Nature, vol. 6(7), pages 733-741, July.
- Onyenkeadi, Victor & Kellici, Suela & Saha, Basudeb, 2018. "Greener synthesis of 1,2-butylene carbonate from CO2 using graphene-inorganic nanocomposite catalyst," Energy, Elsevier, vol. 165(PA), pages 867-876.
- Wang, Yanan & Chen, Xuanyu & Wang, Qiuyang & Zeng, Yiqing & Liao, Kai & Zhang, Shule & Zhong, Qin, 2019. "Novel 3D hierarchical bifunctional NiTiO3 nanoflower for superior visible light photoreduction performance of CO2 to CH4 and high lithium storage performance," Energy, Elsevier, vol. 169(C), pages 580-586.
- Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
- Li, Huiyi & Gao, Jianmin & Du, Qian & Shan, Jingjing & Zhang, Yu & Wu, Shaohua & Wang, Zhijiang, 2021. "Direct CO2electroreduction from NH4HCO3electrolyte to syngas on bromine-modified Ag catalyst," Energy, Elsevier, vol. 216(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tahir, Muhammad, 2024. "Well-designed V2AlC MAX supported g-C3N4/TiO2 Z-scheme heterojunction for photocatalytic CO2 reduction through bi-reforming to produce CO and CH4," Energy, Elsevier, vol. 310(C).
- Menglu Cai & Siyun Dai & Jun Xuan & Yiming Mo, 2025. "Bromide-mediated membraneless electrosynthesis of ethylene carbonate from CO2 and ethylene," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
- Shengjie Wei & Jiexin Zhu & Xingbao Chen & Rongyan Yang & Kailong Gu & Lei Li & Ching-Yu Chiang & Liqiang Mai & Shenghua Chen, 2025. "Planar chlorination engineering induced symmetry-broken single-atom site catalyst for enhanced CO2 electroreduction," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
- Misbahu Ladan Mohammed & Basudeb Saha, 2022. "Recent Advances in Greener and Energy Efficient Alkene Epoxidation Processes," Energies, MDPI, vol. 15(8), pages 1-15, April.
- Lu, Jingwen & Wang, Zhonghui & Su, Sheng & Liu, Hao & Ma, Zhiwei & Ren, Qiangqiang & Xu, Kai & Wang, Yi & Hu, Song & Xiang, Jun, 2024. "Single-step integrated CO2 absorption and mineralization using fly ash coupled mixed amine solution: Mineralization performance and reaction kinetics," Energy, Elsevier, vol. 286(C).
- Bisi Olaniyan & Basudeb Saha, 2020. "Multiobjective Optimization for the Greener Synthesis of Chloromethyl Ethylene Carbonate by CO 2 and Epichlorohydrin via Response Surface Methodology," Energies, MDPI, vol. 13(3), pages 1-27, February.
- Li, Ximei & Gao, Jianmin & You, Shi & Zheng, Yi & Zhang, Yu & Du, Qian & Xie, Min & Qin, Yukun, 2022. "Optimal design and techno-economic analysis of renewable-based multi-carrier energy systems for industries: A case study of a food factory in China," Energy, Elsevier, vol. 244(PB).
- Bisi Olaniyan & Basudeb Saha, 2020. "Comparison of Catalytic Activity of ZIF-8 and Zr/ZIF-8 for Greener Synthesis of Chloromethyl Ethylene Carbonate by CO 2 Utilization," Energies, MDPI, vol. 13(3), pages 1-25, January.
- Jiexin Zhu & Jiantao Li & Ruihu Lu & Ruohan Yu & Shiyong Zhao & Chengbo Li & Lei Lv & Lixue Xia & Xingbao Chen & Wenwei Cai & Jiashen Meng & Wei Zhang & Xuelei Pan & Xufeng Hong & Yuhang Dai & Yu Mao , 2023. "Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
More about this item
Keywords
; ; ; ; ;JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225021309. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.