IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225012885.html
   My bibliography  Save this article

Experimental study on the effects of equivalence ratio on vented methane-hydrogen mixture explosion in confined area

Author

Listed:
  • Li, Shuhong
  • Ma, Jianbo
  • Zhao, Kaiyuan
  • Xiu, Zihao
  • Li, Ranran
  • Liu, Zhenyi
  • Zhao, Yao
  • Li, Mingzhi
  • Liu, Qiqi

Abstract

The combustion and explosive characteristics of a methane-hydrogen mixture (with 15 % hydrogen mixing volume ratio) were studied in a 55 m3 confined space at various equivalence ratios (Φ = 0.9/1.0/1.1/1.2/1.3). Internal and external pressures, along with flame shape, were analyzed. The results suggest that the outside flame propagation rate initially increases and then decreases as the equivalency ratio increases. The fastest flame propagation speed (62.751 m/s) and the greatest outer flame length (11.045 m) occur at an equivalency ratio of 1.1. At the summit of the four phases that typically constitute the development of internal overpressure, the Helmholtz oscillation-generated peak is predominant. For equivalency ratios of 0.9/1.0/1.1/1.2/1.3, Phel has values of 2.705/6.815/12.210/12.339/4.098 kPa. The hazard of the confined space is assessed using the deflagration index (KG), closely associated with Phel. The maximal value of KG, which is 8693.5493 kPa m/s, is achieved at an equivalency ratio of 1.1. The outdoor overpressure is influenced by the pressure generated by the venting structure's aperture and external explosion. The link between the flame propagation speed and the outdoor overpressure apex can be approximated using an exponential function. Findings support designing explosion prevention, investigating accidents, and assessing risks in methane-hydrogen energy industry.

Suggested Citation

  • Li, Shuhong & Ma, Jianbo & Zhao, Kaiyuan & Xiu, Zihao & Li, Ranran & Liu, Zhenyi & Zhao, Yao & Li, Mingzhi & Liu, Qiqi, 2025. "Experimental study on the effects of equivalence ratio on vented methane-hydrogen mixture explosion in confined area," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012885
    DOI: 10.1016/j.energy.2025.135646
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225012885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Peng & Liu, Zhenyi & Li, Pengliang & Zhao, Yao & Li, Mingzhi & Li, Ranran & Wang, Chen & Xiu, Zihao, 2023. "Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel," Energy, Elsevier, vol. 265(C).
    2. Yang, Xiehe & Wang, Tiantian & Zhang, Yang & Zhang, Hai & Wu, Yuxin & Zhang, Jiansheng, 2022. "Hydrogen effect on flame extinction of hydrogen-enriched methane/air premixed flames: An assessment from the combustion safety point of view," Energy, Elsevier, vol. 239(PC).
    3. Li, Dafang & Sun, Weifu & Luo, Zhenmin, 2023. "Methane deflagration promoted by enhancing ignition efficiency via hydrogen doping, with a view to fracturing shales," Energy, Elsevier, vol. 282(C).
    4. Lu, Yawei & Fan, Rujia & Wang, Zhirong & Cao, Xingyan & Guo, Wenjie, 2024. "The influence of hydrogen concentration on the characteristic of explosion venting: Explosion pressure, venting flame and flow field microstructure," Energy, Elsevier, vol. 293(C).
    5. Li, Yanchao & Bi, Mingshu & Li, Bei & Zhou, Yonghao & Huang, Lei & Gao, Wei, 2018. "Explosion hazard evaluation of renewable hydrogen/ammonia/air fuels," Energy, Elsevier, vol. 159(C), pages 252-263.
    6. Qi, Beibei & Li, Haitao & Zhai, Fuer & Yu, Minggao & Wei, Chengcai, 2024. "Experimental and numerical study on the explosion characteristics of syngas under different venting conditions," Energy, Elsevier, vol. 290(C).
    7. Niesporek, Kamil & Baszczeńska, Oliwia & Brzęczek, Mateusz, 2024. "Hydrogen vs. methane: A comparative study of modern combined cycle power plants," Energy, Elsevier, vol. 291(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Jiang & Abed, Azher M. & Talib, Zunirah Mohd & Alghassab, Mohammed A. & Abdullaev, Sherzod & Ghandour, Raymond & Hamlaoui, Oumayma & Alhomayani, Fahad M. & Dutta, Ashit Kumar & Jastaneyah, Zuhair, 2025. "Technical, economic, and environmental study with ANN-based optimization of a biomass-powered versatile/sustainable polygeneration system with carbon capture/utilization approach," Energy, Elsevier, vol. 315(C).
    2. Zhu, Nannan & Tang, Fei & Fan, Xinyang & Lv, Jiang & Zhang, Xiaochun & Zhao, Xiaolong & Hu, Longhua, 2025. "Effect of crosswind on the blowout limit of hydrogen-blended natural gas horizontal jet flame," Energy, Elsevier, vol. 317(C).
    3. Wang, Tao & Sheng, Yuhuai & Nan, Fan & Liu, Litao & Chen, Jian & Meng, Fanyi & Deng, Jun & Shi, Jihao & Luo, Zhenmin, 2024. "Investigation on the flame and pressure behaviors of vented hydrogen-air deflagration from a duct-connected vessel: Effects of venting diameter and static activation pressure," Energy, Elsevier, vol. 307(C).
    4. Simon Drost & Sven Eckart & Chunkan Yu & Robert Schießl & Hartmut Krause & Ulrich Maas, 2023. "Numerical and Experimental Investigations of CH 4 /H 2 Mixtures: Ignition Delay Times, Laminar Burning Velocity and Extinction Limits," Energies, MDPI, vol. 16(6), pages 1-17, March.
    5. Huadao Xing & Runze Yu & Guangan Xu & Xiaodong Li & Yanyu Qiu & Derong Wang & Bin Li & Lifeng Xie, 2022. "Theoretical and Experimental Investigation of Explosion Characteristics of Hydrogen Explosion in a Closed Vessel," Energies, MDPI, vol. 15(22), pages 1-14, November.
    6. Tyagi, Praveen Kumar & Kumar, Rajan, 2024. "Comprehensive performance assessment of photovoltaic/thermal system using MWCNT/water nanofluid and novel finned multi-block nano-enhanced phase change material-based thermal collector: Energy, exergy," Energy, Elsevier, vol. 312(C).
    7. Lopez-Ruiz, G. & Alava, I. & Blanco, J.M., 2023. "Impact of H2/CH4 blends on the flexibility of micromix burners applied to industrial combustion systems," Energy, Elsevier, vol. 270(C).
    8. Abdollahi, Seyyed Amirreza & Ranjbar, Seyyed Faramarz & Ehghaghi, Mir Biuok, 2024. "Fuel mixing and diffusion behind the unswept ramp injector with lobed nozzle at combustor of scramjet engine," Energy, Elsevier, vol. 308(C).
    9. Liu, Lijuan & Zhang, Qi, 2019. "Flame range and energy output in two-phase propylene oxide/air mixtures beyond the original premixed zone," Energy, Elsevier, vol. 171(C), pages 666-677.
    10. Rahimi, Sajjad & Mazaheri, Kiumars & Alipoor, Alireza & Mohammadpour, Amirreza, 2023. "The effect of hydrogen addition on methane-air flame in a stratified swirl burner," Energy, Elsevier, vol. 265(C).
    11. Liang, He & Yan, Xingqing & Shi, Enhua & Wang, Xinfei & Qi, Chang & Ding, Jianfei & Zhang, Lianzhuo & Chen, Lei & Lv, Xianshu & Yu, Jianliang, 2024. "Effect of hydrogen blending on ammonia/air explosion characteristics under wide equivalence ratio," Energy, Elsevier, vol. 297(C).
    12. Zhang, Xuanrui & Shen, Dan & Meng, Xiangyu & Bi, Mingshu, 2025. "A comprehensive kinetic analysis of auto-ignition explosion characteristics of DME/NH3/H2/O2 blends and dilution effects on H2/O2," Energy, Elsevier, vol. 319(C).
    13. Wang, Tao & Liang, He & Luo, Zhenmin & Yu, Jianliang & Cheng, Fangming & Zhao, Jingyu & Su, Bin & Li, Ruikang & Wang, Xuqing & Feng, Zairong & Deng, Jun, 2023. "Thermal suppression effects of diluent gas on the deflagration behavior of H2–air mixtures," Energy, Elsevier, vol. 272(C).
    14. Li, Jianwei & Liu, Jie & Wang, Tianci & Zou, Weitao & Yang, Qingqing & Shen, Jun, 2024. "Analysis of the evolution characteristics of hydrogen leakage and diffusion in a temperature stratified environment," Energy, Elsevier, vol. 293(C).
    15. Wu, Junjie & Xiu, Zihao & Liu, Zhenyi & Li, Pengliang, 2024. "Effect of obstruction ratio rate of change gradients on the deflagration characteristics of H2-Air premixed gases," Energy, Elsevier, vol. 312(C).
    16. Ruikang Li & Zhenmin Luo & Tao Wang & Fangming Cheng & Anning Zhou, 2025. "Emissions Characteristics of OH During H 2 /CH 4 /Air Mixtures Explosion in a 20 L Closed Tank," Energies, MDPI, vol. 18(4), pages 1-25, February.
    17. Cinzia Tornatore & Paolo Sementa & Francesco Catapano, 2025. "Ammonia–Hydrogen Dual-Fuel Combustion: Strategies for Optimizing Performance and Reducing Emissions in Internal Combustion Engines," Energies, MDPI, vol. 18(12), pages 1-26, June.
    18. Chen, Xuanren & Wang, Hui & Wang, Xiangyu & Liu, Xiang & Zhu, Yuxuan, 2023. "Fuel/air mixing characteristics of a Micromix burner for hydrogen-rich gas turbine," Energy, Elsevier, vol. 282(C).
    19. Zhang, Hao & Nie, Baisheng & Liu, Xianfeng & Hu, Fangfang & He, Hengyi & Liu, Peijun & Zhang, Letong, 2024. "The availability of industrial purge gas: Experimental and kinetic study of explosion characteristics of low-concentration H2/CH4 mixtures," Energy, Elsevier, vol. 313(C).
    20. Jing, Qi & Xu, Houjia & Yang, Zhiyuan & Wang, Dan & Li, Yuntao & Zhang, Laibin, 2025. "The influence of jet medium disturbance on combustion of hydrogen-doped natural gas in low temperature environment," Renewable Energy, Elsevier, vol. 245(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.