Prediction of NOx emission from SCR zonal ammonia injection system of boiler based on ensemble incremental learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.135049
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Wu, Yixi & Wang, Ziqi & Shi, Chenli & Jin, Xiaohang & Xu, Zhengguo, 2024. "A novel data-driven approach for coal-fired boiler under deep peak shaving to predict and optimize NOx emission and heat exchange performance," Energy, Elsevier, vol. 304(C).
- Wu, Zheng & Zhang, Yue & Dong, Ze, 2023. "Prediction of NOx emission concentration from coal-fired power plant based on joint knowledge and data driven," Energy, Elsevier, vol. 271(C).
- Fan, Yuchen & Liu, Xin & Zhang, Chaoqun & Li, Chi & Li, Xinying & Wang, Heyang, 2024. "Dynamic prediction of boiler NOx emission with graph convolutional gated recurrent unit model optimized by genetic algorithm," Energy, Elsevier, vol. 294(C).
- Lv, You & Liu, Jizhen & Yang, Tingting & Zeng, Deliang, 2013. "A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 319-329.
- Wu, Zheng & Zhang, Yue & Dong, Ze, 2024. "NOx concentration prediction based on multi-channel fused spectral temporal graph neural network in coal-fired power plants," Energy, Elsevier, vol. 305(C).
- Ma, Yunpeng & Niu, Peifeng & Yan, Shanshan & Li, Guoqiang, 2018. "A modified online sequential extreme learning machine for building circulation fluidized bed boiler's NOx emission model," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 214-226.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
- Zheng, Wei & Wang, Chao & Yang, Yajun & Zhang, Yongfei, 2020. "Multi-objective combustion optimization based on data-driven hybrid strategy," Energy, Elsevier, vol. 191(C).
- Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
- Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
- Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
- Grochowalski, Jaroslaw & Jachymek, Piotr & Andrzejczyk, Marek & Klajny, Marcin & Widuch, Agata & Morkisz, Pawel & Hernik, Bartłomiej & Zdeb, Janusz & Adamczyk, Wojciech, 2021. "Towards application of machine learning algorithms for prediction temperature distribution within CFB boiler based on specified operating conditions," Energy, Elsevier, vol. 237(C).
- Navarkar, Abhishek & Hasti, Veeraraghava Raju & Deneke, Elihu & Gore, Jay P., 2020. "A data-driven model for thermodynamic properties of a steam generator under cycling operation," Energy, Elsevier, vol. 211(C).
- Zhu, Yukun & Yu, Cong & Fan, Wei & Yu, Haiquan & Jin, Wei & Chen, Shuo & Liu, Xia, 2023. "A novel NOx emission prediction model for multimodal operational utility boilers considering local features and prior knowledge," Energy, Elsevier, vol. 280(C).
- Peng, Gongzhuang & Wang, Hongwei & Song, Xiao & Zhang, Heming, 2017. "Intelligent management of coal stockpiles using improved grey spontaneous combustion forecasting models," Energy, Elsevier, vol. 132(C), pages 269-279.
- Yuansheng, Huang & Mengshu, Shi, 2021. "What are the environmental advantages of circulating fluidized bed technology? ——A case study in China," Energy, Elsevier, vol. 220(C).
- Xu, Wentao & Huang, Yaji & Song, Siheng & Chen, Yuzhu & Cao, Gehan & Yu, Mengzhu & Chen, Bo & Zhang, Rongchu & Liu, Yuqing & Zou, Yiran, 2023. "A new online optimization method for boiler combustion system based on the data-driven technique and the case-based reasoning principle," Energy, Elsevier, vol. 263(PE).
- Lv, You & Hong, Feng & Yang, Tingting & Fang, Fang & Liu, Jizhen, 2017. "A dynamic model for the bed temperature prediction of circulating fluidized bed boilers based on least squares support vector machine with real operational data," Energy, Elsevier, vol. 124(C), pages 284-294.
- Zhou, Taotao & Tang, Peng & Ye, Taohong, 2023. "Machine learning based heat release rate indicator of premixed methane/air flame under wide range of equivalence ratio," Energy, Elsevier, vol. 263(PE).
- Yunpeng Ma & Chenheng Xu & Hua Wang & Ran Wang & Shilin Liu & Xiaoying Gu, 2022. "Model NOx, SO 2 Emissions Concentration and Thermal Efficiency of CFBB Based on a Hyper-Parameter Self-Optimized Broad Learning System," Energies, MDPI, vol. 15(20), pages 1-19, October.
- Kyu-Jeong Lee & So-Won Choi & Eul-Bum Lee, 2025. "Artificial Intelligence-Driven Approach to Optimizing Boiler Power Generation Efficiency: The Advanced Boiler Combustion Control Model," Energies, MDPI, vol. 18(4), pages 1-45, February.
- Li, Qingwei & Yao, Guihuan, 2017. "Improved coal combustion optimization model based on load balance and coal qualities," Energy, Elsevier, vol. 132(C), pages 204-212.
- Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
- Hongliang Ding & Shuyun Li & Ziqu Ouyang & Shujun Zhu & Xiongwei Zeng & Haoyang Zhou & Kun Su & Hongshuai Wang & Jicheng Hui, 2025. "Experimental Study on Peak Shaving with Self-Preheating Combustion Equipped with a Novel Compact Fluidized Modification Device," Energies, MDPI, vol. 18(10), pages 1-30, May.
- Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
- Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006917. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.