IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034059.html
   My bibliography  Save this article

Stratigraphic distributions of biomarkers and carbon isotopes in coals constrain the Permo-Carboniferous climatic changes and floral turnovers in the north China block

Author

Listed:
  • Xia, Linlin
  • Wang, Ruwei
  • Huang, Qing
  • Cai, Jiawei
  • Wong, Ming Hung

Abstract

The intricate relationship between climate and vegetation dynamics, particularly during the late Paleozoic ice age marked by multiple icehouse-greenhouse transitions, is a compelling aspect in Earth's historical narrative. In this study, we decipher the interactions between the Permo-Carboniferous climate fluctuations and floral turnovers within the North China Craton, based on the stratigraphic distributions of biomarkers and carbon isotopes from cored coals in Huainan coalfield, North China. Our findings reveal that the changes in n-alkane, terpane, sterane, and polycyclic aromatic hydrocarbon (PAH) distributions result from a confluence of maturation, depositional environment, and organofacies effects. Molecular maturity-sensitive ratios align with the maturity stage determined by Rock-Eval pyrolysis and petrography, categorizing the coals as high volatile bituminous A/B with a composite organic matter derived from terrestrial plants and marine algae. Notably, the 18α-22,29,30-trisnorneohopane (Ts) to 17α-trisnorhopane ratio (Ts/(Ts + Tm)), as well as C31–C34 22S/(22S + 22R) hopanes and C29 20S/(20S + 20R) steranes ratios exhibit moderate correlations with %Ro, indicative of epimerization reactions induced by maturation processes. The stratigraphic variations in pristane to phytane ratios (Pr/Ph), Pr/n-C17, Ph/n-C18, C30 αβ/(αβ+βα) hopanes, and organofacies sensitive PAH indices collectively capture a paleoenvironmental shift from reducing to oxic conditions attributed to marine regression. The systematic changes in PAH concentrations and their maturity indices reflect condensation and dealkylation reactions during the maturation process. The δ13C signature manifests a negative excursion in coals of the Artinskian Shanxi Formation and a subsequent positive excursion in the Capitanian Upper Shihezi Formation coals, respectively, reflecting changes in the δ13C values of contemporaneous atmospheric CO2 in response to regional aridity fluctuations.

Suggested Citation

  • Xia, Linlin & Wang, Ruwei & Huang, Qing & Cai, Jiawei & Wong, Ming Hung, 2024. "Stratigraphic distributions of biomarkers and carbon isotopes in coals constrain the Permo-Carboniferous climatic changes and floral turnovers in the north China block," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034059
    DOI: 10.1016/j.energy.2023.130011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034059
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.