IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v22y1997i6p601-614.html
   My bibliography  Save this article

Optimized supply-air temperature (SAT) in variable-air-volume (VAV) systems

Author

Listed:
  • Ke, Yu-Pei
  • Mumma, Stanley A.

Abstract

A criterion, based on optimization principles, for determining the SAT setpoint in VAV systems is presented. It is generally accepted that conventional SAT reset controls (SATRC), bounded by either space humidity or ductwork size, will save cooling and/or heating energy. How-ever, the ventilation consequences and penalty resulting from increased fan power have generally been overlooked. Ventilation is impacted since changes in the SAT setpoint change the primary airflow rate and the operation of economizer cycles, i.e. the distribution of fresh outdoor air (OA). These changes may result in extra energy demand and ventilation inefficiency if the reset criterion is not appropriate. This optimization concept simultaneously reduces energy consumption and meets ventilation requirements. Simulation results illustrate that the use of the optimized SATRC saves more energy than a conventional one.

Suggested Citation

  • Ke, Yu-Pei & Mumma, Stanley A., 1997. "Optimized supply-air temperature (SAT) in variable-air-volume (VAV) systems," Energy, Elsevier, vol. 22(6), pages 601-614.
  • Handle: RePEc:eee:energy:v:22:y:1997:i:6:p:601-614
    DOI: 10.1016/S0360-5442(96)00154-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544296001545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(96)00154-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    2. Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.
    3. Kusiak, Andrew & Tang, Fan & Xu, Guanglin, 2011. "Multi-objective optimization of HVAC system with an evolutionary computation algorithm," Energy, Elsevier, vol. 36(5), pages 2440-2449.
    4. Mossolly, M. & Ghali, K. & Ghaddar, N., 2009. "Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm," Energy, Elsevier, vol. 34(1), pages 58-66.
    5. Kusiak, Andrew & Li, Mingyang, 2009. "Optimal decision making in ventilation control," Energy, Elsevier, vol. 34(11), pages 1835-1845.
    6. Javier Diaz-Valdivia & Flávio A. S. Fiorelli, 2023. "Computational Analysis of the Automation Strategies of Temperatures of Supplied Air, Chilled and Condensation Water in Commercial Buildings," Energies, MDPI, vol. 16(8), pages 1-13, April.
    7. Yoon-Bok Seong & Young-Hum Cho, 2016. "Development and Evaluation of Applicable Optimal Terminal Box Control Algorithms for Energy Management Control Systems," Sustainability, MDPI, vol. 8(11), pages 1-22, November.
    8. Yaolin Lin & Wei Yang, 2018. "Comments to Paper Entitled: Development of a Data-Driven Predictive Model of Supply Air Temperature in an Air-Handling Unit for Conserving Energy. Energies 2018, 11 , 407," Energies, MDPI, vol. 11(6), pages 1-2, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:22:y:1997:i:6:p:601-614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.