IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v197y2020ics0360544220303418.html
   My bibliography  Save this article

Experimental investigation of the bending clearance on the aerodynamic performance in turbine blade tip region

Author

Listed:
  • Shuai, Jiang
  • Jianyang, Yu
  • Hongwu, Wang
  • Fu, Chen
  • Shaowen, Chen
  • Yanping, Song

Abstract

The bending clearance design method is applied for the aerodynamic optimization by using the Kriging model and Genetic Algorithm. To validate the effects of the clearance shape and the deformation coefficient on the TLF suppression, the baseline case and other four modified cases have been experimentally and numerically investigated in a low speed wind tunnel linear cascade. The measured data and numerical results demonstrates that the modified cases increase the pressure inside the clearance, impedes the tip leakage flow (TLF), and its deceleration effect on leakage fluid inside the bending clearance gradually increased with the increasing deformation coefficient. In addition, the presence of the blocking vortex (BV) exerts a brake on the tip leakage vortex (TLV) and divides it into two parts. The TLV development is interrupted in front of the midstream under the blocking effect, but the UPV scale is enlarged. Compared with the baseline case, the application of bending clearance is proved to reduce the aerodynamic loss and leakage with relative reduction of 9.7% and 28.8%, furthermore, the optimal configuration has better aerodynamic performance with relative reduction of 16.3% and 31%. Both of the aerodynamic loss and leakage continue to decline with the increase of λ, but no significant performance improvement will be achieved when λ exceeds 6 mm.

Suggested Citation

  • Shuai, Jiang & Jianyang, Yu & Hongwu, Wang & Fu, Chen & Shaowen, Chen & Yanping, Song, 2020. "Experimental investigation of the bending clearance on the aerodynamic performance in turbine blade tip region," Energy, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:energy:v:197:y:2020:i:c:s0360544220303418
    DOI: 10.1016/j.energy.2020.117234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220303418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Zhengping & Shao, Fei & Li, Yiran & Zhang, Weihao & Berglund, Albin, 2017. "Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance," Energy, Elsevier, vol. 138(C), pages 167-184.
    2. Gao, Jie & Zheng, Qun & Xu, Tianbang & Dong, Ping, 2015. "Inlet conditions effect on tip leakage vortex breakdown in unshrouded axial turbines," Energy, Elsevier, vol. 91(C), pages 255-263.
    3. Cho, Soo-Yong & Cho, Chong-Hyun & Choi, Sang-Kyu, 2017. "An experimental study of partial admission losses with various blade tip clearances using a linear cascade," Energy, Elsevier, vol. 122(C), pages 627-637.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2022. "Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation," Energy, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Kai & Zheng, Xinqian, 2022. "Novel wave-shaped tip-shroud contours towards reducing turbine leakage loss," Energy, Elsevier, vol. 254(PA).
    2. Jeong, Jae Sung & Lee, Sang Woo, 2020. "Full aerodynamic loss data for efficient squealer tip design in an axial flow turbine," Energy, Elsevier, vol. 206(C).
    3. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    4. Qi, Yingxia & Meng, Xiangqi & Mu, Defu & Sun, Yangliu & Zhang, Hua, 2016. "Study on mechanism and factors affecting the gas leakage through clearance seal at nano-level by molecular dynamics method," Energy, Elsevier, vol. 102(C), pages 252-259.
    5. Damian Joachimiak, 2021. "Novel Method of the Seal Aerodynamic Design to Reduce Leakage by Matching the Seal Geometry to Flow Conditions," Energies, MDPI, vol. 14(23), pages 1-16, November.
    6. Touil, Kaddour & Ghenaiet, Adel, 2019. "Simulation and analysis of vane-blade interaction in a two-stage high-pressure axial turbine," Energy, Elsevier, vol. 172(C), pages 1291-1311.
    7. Qin, Kan & Wang, Hanwei & Qi, Jianhui & Sun, Junliang & Luo, Kai, 2022. "Aerodynamic design and experimental validation of high pressure ratio partial admission axial impulse turbines for unmanned underwater vehicles," Energy, Elsevier, vol. 239(PD).
    8. Jeong, Jae Sung & Bong, Seon Woo & Lee, Sang Woo, 2022. "An efficient winglet coverage for aeroengine turbine blade flat tip and its loss map," Energy, Elsevier, vol. 260(C).
    9. Wang, Yabo & Yu, Jianyang & Song, Yanping & Chen, Fu, 2020. "Parameter optimization of the composite honeycomb tip in a turbine cascade," Energy, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:197:y:2020:i:c:s0360544220303418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.