IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v182y2019icp864-880.html
   My bibliography  Save this article

Methodology of exergy-based economic analysis incorporating safety investment cost for comparative evaluation in process plant design

Author

Listed:
  • Noh, Yeelyong
  • Chang, Daejun

Abstract

This study proposes a new methodology of exergy-based economic analysis incorporating safety investment cost (SIC) for the comparative evaluation of process design alternatives for plants in terms of efficiency and economics while considering safety. Exergy-based economic analysis is employed to synthetically evaluate the design factors within the same framework. The SIC is estimated as the cost required to ensure the safety of the design by reducing accident risks to a level that is ‘as low as reasonably practicable’ (ALARP), which presents a rational approach to converting the risks associated with design alternatives into monetary values for economic analysis. The proposed method is applied to select the optimal working fluid in the Rankine cycle used in the recovery of both waste heat from a gas turbine and cold energy from liquefied natural gas (LNG) of the regasification process. The Rankine cycle, using ammonia, propane, and carbon dioxide as the working fluid, produces electric power of 11.7 MW, 8.9 MW, and 7.4 MW with specific exergy costs of 45.0 $/GJ, 61.9 $/GJ, and 77.8 $/GJ, respectively. Ammonia can be selected as the best alternative. The results are limited to quantitative risk assessment that does not consider domino effect and environmental damage.

Suggested Citation

  • Noh, Yeelyong & Chang, Daejun, 2019. "Methodology of exergy-based economic analysis incorporating safety investment cost for comparative evaluation in process plant design," Energy, Elsevier, vol. 182(C), pages 864-880.
  • Handle: RePEc:eee:energy:v:182:y:2019:i:c:p:864-880
    DOI: 10.1016/j.energy.2019.06.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421931151X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Langdalen, Henrik & Abrahamsen, Eirik Bjorheim & Selvik, Jon Tømmerås, 2020. "On the importance of systems thinking when using the ALARP principle for risk management," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:182:y:2019:i:c:p:864-880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.