IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v171y2019icp1100-1106.html
   My bibliography  Save this article

One dimensional liner temperature prediction in a tubular combustor

Author

Listed:
  • Topal, Ahmet
  • Turan, Onder

Abstract

Liner cooling can be optimized in the preliminary design phase by using one-dimensional heat transfer analysis in scope of the gas turbine combustor liner durability. So it is important to understand heat transfer process in the combustor liner for an effective prediction of liner wall temperatures. In this study, one –dimensional liner wall temperature predictions of an experimental tubular combustor have been performed for different operating conditions. Experimental tests have been obtained by the combustor atmospheric rig tests over a range of inlet temperature from 400 to 475 K and inlet mass flow rates of 0.035–0.050 kg/s at 6 different axial locations representing the primary zone, film cooled area, secondary zone and dilution zone. A tubular type combustor with air-blast fuel injections has been used for the experimental study. By the help of this architecture, it was possible to get more axially symmetrical temperature distribution compared to an annular combustor. Predictions shows that a maximum 85 K error in primary zone. It has been predicted more accurate results in the other zones.

Suggested Citation

  • Topal, Ahmet & Turan, Onder, 2019. "One dimensional liner temperature prediction in a tubular combustor," Energy, Elsevier, vol. 171(C), pages 1100-1106.
  • Handle: RePEc:eee:energy:v:171:y:2019:i:c:p:1100-1106
    DOI: 10.1016/j.energy.2019.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219300295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Kyung Min & Jeon, Yun Heung & Yun, Namgeon & Lee, Dong Hyun & Cho, Hyung Hee, 2011. "Thermo-mechanical life prediction for material lifetime improvement of an internal cooling system in a combustion liner," Energy, Elsevier, vol. 36(2), pages 942-949.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    2. Nozari, Mohammadreza & Tabejamaat, Sadegh & Sadeghizade, Hasan & Aghayari, Majid, 2021. "Experimental investigation of the effect of gaseous fuel injector geometry on the pollutant formation and thermal characteristics of a micro gas turbine combustor," Energy, Elsevier, vol. 235(C).
    3. Aygun, Hakan, 2024. "Effects of air to fuel ratio on parameters of combustor used for gas turbine engines: Applications of turbojet, turbofan, turboprop and turboshaft," Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanmaniraja Radhakrishnan & Jun Su Park, 2021. "Thermal Analysis and Creep Lifetime Prediction Based on the Effectiveness of Thermal Barrier Coating on a Gas Turbine Combustor Liner Using Coupled CFD and FEM Simulation," Energies, MDPI, vol. 14(13), pages 1-21, June.
    2. Nozari, Mohammadreza & Tabejamaat, Sadegh & Sadeghizade, Hasan & Aghayari, Majid, 2021. "Experimental investigation of the effect of gaseous fuel injector geometry on the pollutant formation and thermal characteristics of a micro gas turbine combustor," Energy, Elsevier, vol. 235(C).
    3. Peng Guan & Yan-Ting Ai & Cheng-Wei Fei, 2019. "An Enhanced Flow-Thermo-Structural Modeling and Validation for the Integrated Analysis of a Film Cooling Nozzle Guide Vane," Energies, MDPI, vol. 12(14), pages 1-20, July.
    4. Kim, Kyung Min & Moon, Hokyu & Park, Jun Su & Cho, Hyung Hee, 2014. "Optimal design of impinging jets in an impingement/effusion cooling system," Energy, Elsevier, vol. 66(C), pages 839-848.
    5. Chung, Heeyoon & Sohn, Ho-Seong & Park, Jun Su & Kim, Kyung Min & Cho, Hyung Hee, 2017. "Thermo-structural analysis of cracks on gas turbine vane segment having multiple airfoils," Energy, Elsevier, vol. 118(C), pages 1275-1285.
    6. Park, Jun Su & Park, Sehjin & Kim, Kyung Min & Choi, Beom Seok & Cho, Hyung Hee, 2013. "Effect of the thermal insulation on generator and micro gas turbine system," Energy, Elsevier, vol. 59(C), pages 581-589.
    7. Zhang, Yueliang & Li, Jiangheng & Xie, Jin, 2022. "Effects of lateral cooling hole configuration on a swirl-stabilized combustor," Energy, Elsevier, vol. 259(C).
    8. Badur, Janusz & Ziółkowski, Paweł & Sławiński, Daniel & Kornet, Sebastian, 2015. "An approach for estimation of water wall degradation within pulverized-coal boilers," Energy, Elsevier, vol. 92(P1), pages 142-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:171:y:2019:i:c:p:1100-1106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.