IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v156y2018icp387-400.html
   My bibliography  Save this article

An improved risk-benefit collaborative grey target decision model and its application in the decision making of load adjustment schemes

Author

Listed:
  • Li, Rongbo
  • Jiang, Zhiqiang
  • Ji, Changming
  • Li, Anqiang
  • Yu, Shan

Abstract

Power generation plan formulated based on the forecasted runoff is an important basis for the actual operation of hydropower station. However, due to the forecast error, the load adjustment is necessary in the actual operation, and how to find out the most satisfactory load adjustment scheme from the scheme set is an important topic. So, in order to comprehensively reflect the risk and benefit state of hydropower station operation, a risk-benefit collaborative evaluating indicator system of load adjustment scheme is established firstly in this paper, and aim at the strong subjectivity of present evaluation methods, an improved grey target decision model based on moment estimation method is proposed, and the combinatorial weight integration technology and the Mahalanobis distance are coupled in this model. Taking the cascade hydropower stations of Yalong River in China as an instance, six schemes are evaluated by the proposed model, and the results are compared and analyzed with another six evaluation models. Results show that the proposed model can effectively coordinate different weighting methods and overcome the shortcomings of traditional grey target decision model about the insufficient consideration on the importance and correlation of evaluating indicators, and it has a good value of popularization and application.

Suggested Citation

  • Li, Rongbo & Jiang, Zhiqiang & Ji, Changming & Li, Anqiang & Yu, Shan, 2018. "An improved risk-benefit collaborative grey target decision model and its application in the decision making of load adjustment schemes," Energy, Elsevier, vol. 156(C), pages 387-400.
  • Handle: RePEc:eee:energy:v:156:y:2018:i:c:p:387-400
    DOI: 10.1016/j.energy.2018.05.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218309459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Pankaj & Banerjee, Rangan & Mishra, Trupti, 2020. "A framework for analyzing trade-offs in cost and emissions in power sector," Energy, Elsevier, vol. 195(C).
    2. Groissböck, Markus & Gusmão, Alexandre, 2020. "Impact of renewable resource quality on security of supply with high shares of renewable energies," Applied Energy, Elsevier, vol. 277(C).
    3. Zhiqiang Jiang & Zhengyang Tang & Yi Liu & Yuyun Chen & Zhongkai Feng & Yang Xu & Hairong Zhang, 2019. "Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4553-4568, October.
    4. Yunqi Zhao & Jing Xiang & Jiaming Xu & Jinying Li & Ning Zhang, 2019. "Study on the Comprehensive Benefit Evaluation of Transnational Power Networking Projects Based on Multi-Project Stakeholder Perspectives," Energies, MDPI, vol. 12(2), pages 1-21, January.
    5. Hungerford, Zoe & Bruce, Anna & MacGill, Iain, 2019. "The value of flexible load in power systems with high renewable energy penetration," Energy, Elsevier, vol. 188(C).
    6. Luo, Xiaoyuan & Wang, Xinyu & Zhang, Mingyue & Guan, Xinping, 2019. "Distributed detection and isolation of bias injection attack in smart energy grid via interval observer," Applied Energy, Elsevier, vol. 256(C).
    7. Penghui Ma & Yajin Hu & Hansheng Liu, 2019. "Optimal Design for Pressurized Irrigation Subunits with a Minimum Cost and Maximum Area for Uniformly Sloping Fields," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2711-2726, June.
    8. Penghui Ma & Yajin Hu & Hansheng Liu & Yuannong Li, 2020. "The Optimum Design Criteria for On-demand Pressurized Microirrigation Network Systems: Optimizing Subunits with Paired Laterals based on the Maximum Size," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3237-3255, August.
    9. Rosha, Pali & Mohapatra, Saroj Kumar & Mahla, Sunil Kumar & Dhir, Amit, 2019. "Hydrogen enrichment of biogas via dry and autothermal-dry reforming with pure nickel (Ni) nanoparticle," Energy, Elsevier, vol. 172(C), pages 733-739.
    10. Sun, Hong & Yu, Mingfu & Li, Qiang & Zhuang, Kaiming & Li, Jie & Almheiri, Saif & Zhang, Xiaochen, 2019. "Characteristics of charge/discharge and alternating current impedance in all-vanadium redox flow batteries," Energy, Elsevier, vol. 168(C), pages 693-701.
    11. Smitha, T.V. & Nagaraja, K.V., 2019. "Application of automated cubic-order mesh generation for efficient energy transfer using parabolic arcs for microwave problems," Energy, Elsevier, vol. 168(C), pages 1104-1118.
    12. Daneshvar, Mohammadreza & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Asadi, Somayeh, 2020. "Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment," Energy, Elsevier, vol. 193(C).
    13. Chang, Soowon & Saha, Nirvik & Castro-Lacouture, Daniel & Yang, Perry Pei-Ju, 2019. "Multivariate relationships between campus design parameters and energy performance using reinforcement learning and parametric modeling," Applied Energy, Elsevier, vol. 249(C), pages 253-264.
    14. Zhiqiang Jiang & Hui Qin & Changming Ji & Dechao Hu & Jianzhong Zhou, 2019. "Effect Analysis of Operation Stage Difference on Energy Storage Operation Chart of Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1349-1365, March.
    15. Yueqiu Wu & Liping Wang & Yi Wang & Yanke Zhang & Jiajie Wu & Qiumei Ma & Xiaoqing Liang & Bin He, 2021. "Risk Analysis for Short-Term Operation of the Power Generation in Cascade Reservoirs Considering Multivariate Reservoir Inflow Forecast Errors," Sustainability, MDPI, vol. 13(7), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:156:y:2018:i:c:p:387-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.