IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v152y2018icp834-839.html
   My bibliography  Save this article

Impedance spectroscopy for assessment of thermoelectric module properties under a practical operating temperature

Author

Listed:
  • Yoo, Chung-Yul
  • Kim, Yeongseon
  • Hwang, Juyeon
  • Yoon, Hana
  • Cho, Byung Jin
  • Min, Gao
  • Park, Sang Hyun

Abstract

Impedance spectroscopy has recently received considerable attention in terms of thermoelectric module characterization. However, to date, no study has been conducted on the high-temperature measurement of the module using impedance spectroscopy. In this paper, a systematic study on the Bi2Te3-based thermoelectric module up to 150 °C is reported. Evaluation results indicated that impedance spectroscopy could be used for characterizing the thermoelectric module in a practical operation temperature range. The impedance spectroscopy data of the module changed with the increased temperature on account of the change in the characteristics of the thermoelectric legs. Analysis of the impedance spectroscopy data enabled determination of the thermoelectric module figure of merit, while enabling extraction of three key parameters—the Seebeck coefficient, thermal conductivity, and electrical conductivity—by employing a one-dimensional heat equation. The results indicated that, while the thermal conductivity increased with temperature, the electrical conductivity decreased with increasing temperature. The Seebeck coefficient increased with temperature up to 100 °C and tended to be saturated. The module figure of merit was 0.82 and peaked at 75 °C. The results obtained in this study can contribute to the rapid evaluation of thermoelectric modules for exploiting various novel thermoelectric materials, metallization layers, electrodes, and insulating plates.

Suggested Citation

  • Yoo, Chung-Yul & Kim, Yeongseon & Hwang, Juyeon & Yoon, Hana & Cho, Byung Jin & Min, Gao & Park, Sang Hyun, 2018. "Impedance spectroscopy for assessment of thermoelectric module properties under a practical operating temperature," Energy, Elsevier, vol. 152(C), pages 834-839.
  • Handle: RePEc:eee:energy:v:152:y:2018:i:c:p:834-839
    DOI: 10.1016/j.energy.2017.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217320339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beltrán-Pitarch, Braulio & Maassen, Jesse & García-Cañadas, Jorge, 2021. "Comprehensive impedance spectroscopy equivalent circuit of a thermoelectric device which includes the internal thermal contact resistances," Applied Energy, Elsevier, vol. 299(C).
    2. Yoo, Chung-Yul & Yeon, Changho & Jin, Younghwan & Kim, Yeongseon & Song, Jinseop & Yoon, Hana & Park, Sang Hyun & Beltrán-Pitarch, Braulio & García-Cañadas, Jorge & Min, Gao, 2019. "Determination of the thermoelectric properties of a skutterudite-based device at practical operating temperatures by impedance spectroscopy," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:152:y:2018:i:c:p:834-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.