IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp2528-2539.html
   My bibliography  Save this article

Exergy-based evaluation of methanol production from natural gas with CO2 utilization

Author

Listed:
  • Blumberg, Timo
  • Morosuk, Tatiana
  • Tsatsaronis, George

Abstract

Energy and exergy analyses were carried out for a medium-capacity methanol plant based on a low-pressure synthesis process for natural gas. The process comprises a pretreatment of natural gas, a steam-methane reforming unit for generation of synthesis gas, a methanol synthesis, a distillation of crude methanol, and an integrated steam cycle for waste heat recovery. Carbon dioxide from carbon capture is used for gas conditioning by adjusting the syngas module for methanol synthesis through counterbalancing of the excess hydrogen. A sensitivity analysis was performed to identify favorable operation parameters for the tubular steam reformer. The energetic and exergetic efficiencies for the overall system were found to be 35.9% and 37.7%, respectively. The specific energy requirements (energy intensities) are 19.6 GJth/tCH3OH and 0.8 GJel/tCH3OH, while the specific methane consumption was calculated to be 0.54 ton CH4 per ton CH3OH. Compared to a stand-alone plant, the utilization of carbon dioxide increases the methanol yield by 22%. The exergy analysis shows that the highest inefficiencies occur in the reforming unit, the steam cycle, and the synthesis unit. In particular, the steam reformer, the synthesis reactor, and several heat exchangers show a high potential for thermodynamic improvement.

Suggested Citation

  • Blumberg, Timo & Morosuk, Tatiana & Tsatsaronis, George, 2017. "Exergy-based evaluation of methanol production from natural gas with CO2 utilization," Energy, Elsevier, vol. 141(C), pages 2528-2539.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2528-2539
    DOI: 10.1016/j.energy.2017.06.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217311398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Timo Blumberg & Max Sorgenfrei & George Tsatsaronis, 2015. "Design and Assessment of an IGCC Concept with CO 2 Capture for the Co-Generation of Electricity and Substitute Natural Gas," Sustainability, MDPI, vol. 7(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossam A. Gabbar & Mohamed Aboughaly & Stefano Russo, 2017. "Conceptual Design and Energy Analysis of Integrated Combined Cycle Gasification System," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    2. Luis Olmos-Villalba & Bernardo Herrera & Anderson Gallego & Karen Cacua, 2019. "Experimental Evaluation of a Diesel Cogeneration System for Producing Power and Drying Aromatic Herbs," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    3. Jiuping Xu & Lurong Fan & Chengwei Lv, 2017. "Equilibrium Strategy Based Recycling Facility Site Selection towards Mitigating Coal Gangue Contamination," Sustainability, MDPI, vol. 9(2), pages 1-27, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2528-2539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.