IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v140y2017ip1p58-68.html
   My bibliography  Save this article

Investigation on co-firing of coal mine waste residues in pulverized coal combustion systems

Author

Listed:
  • Pallarés, Javier
  • Herce, Carlos
  • Bartolomé, Carmen
  • Peña, Begoña

Abstract

Millions of tonnes of coal mine waste residues are piled up in dumping sites, causing serious environmental problems. Co-combustion in fluidized bed facilities is the most widespread alternative for the energy utilization of these by-products. However, no experiences have been so far reported of coal mine waste residues co-firing under pulverized fuel combustion technology. This work proves the technical feasibility of co-firing coal with up to 20% coal mine waste residues and investigates the impacts of transferring this co-firing alternative into a commercial unit. Experimental co-firing tests of coal mine waste residues were conducted on a 500 kWth pulverized fuel pilot plant. Regulated emissions (CO, CO2, SO2 and NOx) and visible flame radiation were monitored, obtaining regular and stable flicker and acceptable emissions levels for CO (200 mg/m3N) and NOx (700–800 mg/m3N). Finally, the impact analysis of co-firing coal mine waste residues in a full-scale pulverized fuel plant was performed by simulating the power cycle and combustion process in a 160 MWe pulverized coal combustion unit. Simulation results show the viability of this alternative in terms of plant efficiency, increase in power consumptions of auxiliary equipment and pollutant emissions for co-firing ratios under 10% in energy basis.

Suggested Citation

  • Pallarés, Javier & Herce, Carlos & Bartolomé, Carmen & Peña, Begoña, 2017. "Investigation on co-firing of coal mine waste residues in pulverized coal combustion systems," Energy, Elsevier, vol. 140(P1), pages 58-68.
  • Handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:58-68
    DOI: 10.1016/j.energy.2017.07.174
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217313683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González-Cencerrado, A. & Peña, B. & Gil, A., 2012. "Coal flame characterization by means of digital image processing in a semi-industrial scale PF swirl burner," Applied Energy, Elsevier, vol. 94(C), pages 375-384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vershinina, K. Yu & Shlegel, N.E. & Strizhak, P.A., 2019. "Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes," Energy, Elsevier, vol. 169(C), pages 18-28.
    2. Hao, Runlong & Zhang, Zili & Zeng, Qinda & Mao, Yumin & He, Hongzhou & Mao, Xingzhou & Yang, Fan & Zhao, Yi, 2018. "Synergistic behaviors of anthracite and dried sawdust sludge during their co-combustion: Conversion ratio, micromorphology variation and constituents evolutions," Energy, Elsevier, vol. 153(C), pages 776-787.
    3. Mlonka-Mędrala, Agata & Dziok, Tadeusz & Magdziarz, Aneta & Nowak, Wojciech, 2021. "Composition and properties of fly ash collected from a multifuel fluidized bed boiler co-firing refuse derived fuel (RDF) and hard coal," Energy, Elsevier, vol. 234(C).
    4. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    5. Peña, B. & Pallarés, J. & Bartolomé, C. & Herce, C., 2018. "Experimental study on the effects of co-firing coal mine waste residues with coal in PF swirl burners," Energy, Elsevier, vol. 157(C), pages 45-53.
    6. Liang Song & Shanjun Liu & Wenwen Li, 2019. "Quantitative Inversion of Fixed Carbon Content in Coal Gangue by Thermal Infrared Spectral Data," Energies, MDPI, vol. 12(9), pages 1-17, May.
    7. Bi, Haobo & Wang, Chengxin & Lin, Qizhao & Jiang, Xuedan & Jiang, Chunlong & Bao, Lin, 2020. "Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via TG-FTIR," Energy, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Dongdong & Cheng, Shusen, 2019. "Measurement study of the PCI process on the temperature distribution in raceway zone of blast furnace by using digital imaging techniques," Energy, Elsevier, vol. 174(C), pages 814-822.
    2. Chen, Junghui & Chan, Lester Lik Teck & Cheng, Yi-Cheng, 2013. "Gaussian process regression based optimal design of combustion systems using flame images," Applied Energy, Elsevier, vol. 111(C), pages 153-160.
    3. Peña, B. & Pallarés, J. & Bartolomé, C. & Herce, C., 2018. "Experimental study on the effects of co-firing coal mine waste residues with coal in PF swirl burners," Energy, Elsevier, vol. 157(C), pages 45-53.
    4. Zhongya Xi & Zhongguang Fu & Syed Waqas Sabir & Xiaotian Hu & Yibo Jiang & Tao Zhang, 2018. "Experimental Analysis on Flame Flickering of a Swirl Partially Premixed Combustion," Energies, MDPI, vol. 11(9), pages 1-14, September.
    5. Ögren, Yngve & Tóth, Pál & Garami, Attila & Sepman, Alexey & Wiinikka, Henrik, 2018. "Development of a vision-based soft sensor for estimating equivalence ratio and major species concentration in entrained flow biomass gasification reactors," Applied Energy, Elsevier, vol. 226(C), pages 450-460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:58-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.