IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v133y2017icp491-501.html
   My bibliography  Save this article

Operating optimization for improved energy consumption of a TAC system affected by nighttime thermal loads of building envelopes

Author

Listed:
  • Mao, Ning
  • Pan, Dongmei
  • Song, Mengjie
  • Li, Zhao
  • Xu, Yingjie
  • Deng, Shiming

Abstract

Task/ambient air conditioning (TAC) system is reported to be an energy efficient technology with available methods to control thermal comfortable level for sleeping environments. Better performance in energy saving for TAC systems in sleeping environment has been demonstrated in previous studies. However, it should be noticed that the building envelope thermal load affects the indoor thermal environment and operation of the air conditioning system due to the heat transfer through the envelope. The variation of indoor thermal environment will directly affect the performance of the TAC system, especially the set of operation parameters. Therefore, an optimization study on the TAC system operation considering the effects of envelope thermal load was carried out in this paper. Firstly, a full factorial design method was used to construct the simulation case matrix. Secondly, the models of the energy consumption and thermal comfort were established using operating parameters and envelope thermal load. Thirdly, comfort surface and comfort lines were obtained to calculate the optimum operating parameters at which the energy consumption was at the lowest. Finally, the energy consumption at the optimum status was calculated. The results show that the TAC system at the optimum status can save 1.4 to 1.7 kWh each night.

Suggested Citation

  • Mao, Ning & Pan, Dongmei & Song, Mengjie & Li, Zhao & Xu, Yingjie & Deng, Shiming, 2017. "Operating optimization for improved energy consumption of a TAC system affected by nighttime thermal loads of building envelopes," Energy, Elsevier, vol. 133(C), pages 491-501.
  • Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:491-501
    DOI: 10.1016/j.energy.2017.04.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217306722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    2. Mao, Ning & Song, Mengjie & Pan, Dongmei & Deng, Shiming, 2018. "Comparative studies on using RSM and TOPSIS methods to optimize residential air conditioning systems," Energy, Elsevier, vol. 144(C), pages 98-109.
    3. Jiying Liu & Shengwei Zhu & Moon Keun Kim & Jelena Srebric, 2019. "A Review of CFD Analysis Methods for Personalized Ventilation (PV) in Indoor Built Environments," Sustainability, MDPI, vol. 11(15), pages 1-33, August.
    4. Hernández-Romero, Ilse María & Fuentes-Cortés, Luis Fabián & Nápoles-Rivera, Fabricio, 2019. "Conditions accommodating a dominant stakeholder in the design of renewable air conditioning systems for tourism complexes," Energy, Elsevier, vol. 172(C), pages 808-822.
    5. Ping Wang & Guangcai Gong & Yan Zhou & Bin Qin, 2018. "A Simplified Calculation Method for Building Envelope Cooling Loads in Central South China," Energies, MDPI, vol. 11(7), pages 1-18, July.
    6. Song, Mengjie & Xu, Xiangguo & Mao, Ning & Deng, Shiming & Xu, Yingjie, 2017. "Energy transfer procession in an air source heat pump unit during defrosting," Applied Energy, Elsevier, vol. 204(C), pages 679-689.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:491-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.