IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip1p238-256.html
   My bibliography  Save this article

Assessing the thermal performance of three cold energy storage materials with low eutectic temperature for food cold chain

Author

Listed:
  • Li, Yu-Chu M.
  • Chen, Yen-Hong A.

Abstract

Development a novel inorganic salt eutectic solution for cold energy storage material (ESM) have succeeded conducted in this study. The eutectic solutions shows a low melting temperature and high latent heat of fusion value as effect of addition nano copper powder into the eutectic solution. We report a new simulation technique of thermal property as well as test results of three inorganic salts. The thermal property of three inorganic salts were simulated using the differential scanning calorimetry (DSC) method with the help of three binary phase diagrams. The simulation shows the liquidus temperature of each binary phase diagram conforming nicely to the theoretical prediction of the Gibbs-Duhem equation. In order to predict cold storage keeping time, we derived a heat transfer model based on energy conservation law. Three ESMs were tested for their cold energy storage performance and thermal properties aging for durability. The empirical results indicate that, for food cold chain, the melting point rule is superior with less deviation. With this information, one can pre-estimate the basic design parameters with great accuracy; the cost of design and development for a new cold storage logistics system can be dramatically reduced.

Suggested Citation

  • Li, Yu-Chu M. & Chen, Yen-Hong A., 2016. "Assessing the thermal performance of three cold energy storage materials with low eutectic temperature for food cold chain," Energy, Elsevier, vol. 115(P1), pages 238-256.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:238-256
    DOI: 10.1016/j.energy.2016.08.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216312191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.08.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Harpreet & Talekar, Anjali & Chien, Wen-Ming & Shi, Renhai & Chandra, Dhanesh & Mishra, Amrita & Tirumala, Muralidhar & Nelson, Daryl J., 2015. "Continuous solid-state phase transitions in energy storage materials with orientational disorder – Computational and experimental approach," Energy, Elsevier, vol. 91(C), pages 334-349.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Zhengtang & Dong, Peiwu & Ju, Yanbing & Gan, Zhenkun & Zhu, Min, 2022. "An intelligent green vehicle management system for urban food reliably delivery:A case study of Shanghai, China," Energy, Elsevier, vol. 257(C).
    2. Song, Yanlin & Zhang, Nan & Jing, Yaoge & Cao, Xiaoling & Yuan, Yanping & Haghighat, Fariborz, 2019. "Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage," Energy, Elsevier, vol. 189(C).
    3. Lin, Niangzhi & Li, Chuanchang & Zhang, Dongyao & Li, Yaxi & Chen, Jian, 2022. "Emerging phase change cold storage materials derived from sodium sulfate decahydrate," Energy, Elsevier, vol. 245(C).
    4. Li, Chuanchang & Peng, Meicheng & Xie, Baoshan & Li, Yaxi & Li, Mu, 2024. "Novel phase change cold energy storage materials for refrigerated transportation of fruits," Renewable Energy, Elsevier, vol. 220(C).
    5. Tiwari, Vipul Kumar & Kumar, Alok & Kumar, Arvind, 2019. "Enhancing ice slurry generation by using inclined cavity for subzero cold thermal energy storage: Simulation, experiment and performance analysis," Energy, Elsevier, vol. 183(C), pages 398-414.
    6. Xinqing Xiao & Xu Zhang & Zetian Fu & Weisong Mu & Xiaoshuan Zhang, 2018. "Energy Conservation Potential Assessment Method for Table Grapes Supply Chain," Sustainability, MDPI, vol. 10(8), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:238-256. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.