IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v101y2017icp526-536.html
   My bibliography  Save this article

Economic potential of fuel recycling options: A lifecycle cost analysis of future nuclear system transition in China

Author

Listed:
  • Gao, Ruxing
  • Choi, Sungyeol
  • Il Ko, Won
  • Kim, Sungki

Abstract

In today's profit-driven market, how best to pursue advanced nuclear fuel cycle technologies while maintaining the cost competitiveness of nuclear electricity is of crucial importance to determine the implementation of spent fuel reprocessing and recycling in China. In this study, a comprehensive techno-economic analysis is undertaken to evaluate the economic feasibility of ongoing national projects and the technical compatibility with China's future fuel cycle transition. We investigated the dynamic impacts of technical and economic uncertainties in the lifecycle of a nuclear system. The electricity generation costs associated with four potential fuel cycle transition scenarios were simulated by probabilistic and deterministic approaches and then compared in detail. The results showed that the total cost of a once-through system is lowest compared those of other advanced systems involving reprocessing and recycling. However, thanks to the consequential uncertainties caused by the further progress toward technology maturity, the economic potential of fuel recycling options was proven through a probabilistic uncertainty analysis. Furthermore, it is recommended that a compulsory executive of closed fuel cycle policy would pose some investment risk in the near term, though the execution of a series of R&D initiatives with a flexible roadmap would be valuable in the long run.

Suggested Citation

  • Gao, Ruxing & Choi, Sungyeol & Il Ko, Won & Kim, Sungki, 2017. "Economic potential of fuel recycling options: A lifecycle cost analysis of future nuclear system transition in China," Energy Policy, Elsevier, vol. 101(C), pages 526-536.
  • Handle: RePEc:eee:enepol:v:101:y:2017:i:c:p:526-536
    DOI: 10.1016/j.enpol.2016.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516305663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bader Alshuraiaan & Sergey Pushkin & Anastasia Kurilova & Magdalena Mazur, 2021. "Management of the Energy and Economic Potential of Nuclear Waste Use," Energies, MDPI, vol. 14(12), pages 1-14, June.
    2. Dungan, K. & Gregg, R.W.H. & Morris, K. & Livens, F.R. & Butler, G., 2021. "Assessment of the disposability of radioactive waste inventories for a range of nuclear fuel cycles: Inventory and evolution over time," Energy, Elsevier, vol. 221(C).
    3. Yan Xu & Junjie Kang & Jiahai Yuan, 2018. "The Prospective of Nuclear Power in China," Sustainability, MDPI, vol. 10(6), pages 1-21, June.
    4. Robin Taylor & William Bodel & Gregg Butler, 2022. "A Review of Environmental and Economic Implications of Closing the Nuclear Fuel Cycle—Part Two: Economic Impacts," Energies, MDPI, vol. 15(7), pages 1-31, March.
    5. Ruxing Gao & Hyo On Nam & Won Il Ko & Hong Jang, 2017. "National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach," Energies, MDPI, vol. 10(12), pages 1-24, December.
    6. Gao, Ruxing & Nam, Hyo On & Ko, Won Il & Jang, Hong, 2018. "Integrated system evaluation of nuclear fuel cycle options in China combined with an analytical MCDM framework," Energy Policy, Elsevier, vol. 114(C), pages 221-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:101:y:2017:i:c:p:526-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.