IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v291y2021i3p883-893.html
   My bibliography  Save this article

An anytime tree search algorithm for the 2018 ROADEF/EURO challenge glass cutting problem

Author

Listed:
  • Libralesso, Luc
  • Fontan, Florian

Abstract

In this article, we present the anytime tree search algorithm we designed for the 2018 ROADEF/EURO challenge glass cutting problem proposed by the French company Saint-Gobain. The resulting program was ranked first among 64 participants. Its key components are: a new search algorithm called Iterative Memory Bounded A* (IMBA*) with guide functions, a symmetry breaking strategy, and a pseudo-dominance rule. We perform a comprehensive study of these components showing that each of them contributes to the algorithm global performances. In addition, we designed a second tree search algorithm fully based on the pseudo-dominance rule and dedicated to some of the challenge instances with strong precedence constraints. On these instances, it finds the best-known solutions very quickly.

Suggested Citation

  • Libralesso, Luc & Fontan, Florian, 2021. "An anytime tree search algorithm for the 2018 ROADEF/EURO challenge glass cutting problem," European Journal of Operational Research, Elsevier, vol. 291(3), pages 883-893.
  • Handle: RePEc:eee:ejores:v:291:y:2021:i:3:p:883-893
    DOI: 10.1016/j.ejor.2020.10.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720309413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.10.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Polyakovskiy, Sergey & M’Hallah, Rym, 2022. "A lookahead matheuristic for the unweighed variable-sized two-dimensional bin packing problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 104-117.
    2. Braam, Florian & van den Berg, Daan, 2022. "Which rectangle sets have perfect packings?," Operations Research Perspectives, Elsevier, vol. 9(C).
    3. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Parreño, Francisco, 2022. "A beam search algorithm for minimizing crane times in premarshalling problems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1063-1078.
    4. Fontaine, Romain & Dibangoye, Jilles & Solnon, Christine, 2023. "Exact and anytime approach for solving the time dependent traveling salesman problem with time windows," European Journal of Operational Research, Elsevier, vol. 311(3), pages 833-844.
    5. Rapine, Christophe & Pedroso, Joao Pedro & Akbalik, Ayse, 2022. "The two-dimensional knapsack problem with splittable items in stacks," Omega, Elsevier, vol. 112(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:291:y:2021:i:3:p:883-893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.