IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v266y2018i1p35-45.html
   My bibliography  Save this article

A strategic view of University timetabling

Author

Listed:
  • Lindahl, Michael
  • Mason, Andrew J.
  • Stidsen, Thomas
  • Sørensen, Matias

Abstract

University timetabling has traditionally been studied as an operational problem where the goal is to assign lectures to rooms and timeslots and create timetables of high quality for students and teachers. Two other important decision problems arise before this can be solved: what rooms are necessary, and in which teaching periods? These decisions may have a large impact on the resulting timetables and are rarely changed or even discussed. This paper focuses on solving these two strategic problems and investigates the impact of these decisions on the quality of the resulting timetables.

Suggested Citation

  • Lindahl, Michael & Mason, Andrew J. & Stidsen, Thomas & Sørensen, Matias, 2018. "A strategic view of University timetabling," European Journal of Operational Research, Elsevier, vol. 266(1), pages 35-45.
  • Handle: RePEc:eee:ejores:v:266:y:2018:i:1:p:35-45
    DOI: 10.1016/j.ejor.2017.09.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717308433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.09.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C Beyrouthy & E K Burke & D Landa-Silva & B McCollum & P McMullan & A J Parkes, 2009. "Towards improving the utilization of university teaching space," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 130-143, January.
    2. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "An overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 313-349, July.
    3. Gerald Lach & Marco Lübbecke, 2012. "Curriculum based course timetabling: new solutions to Udine benchmark instances," Annals of Operations Research, Springer, vol. 194(1), pages 255-272, April.
    4. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "Rejoinder on: an overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 366-368, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lemos, Alexandre & Melo, Francisco S. & Monteiro, Pedro T. & Lynce, Inês, 2019. "Room usage optimization in timetabling: A case study at Universidade de Lisboa," Operations Research Perspectives, Elsevier, vol. 6(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esmaeilbeigi, Rasul & Mak-Hau, Vicky & Yearwood, John & Nguyen, Vivian, 2022. "The multiphase course timetabling problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1098-1119.
    2. Massimiliano Caramia & Stefano Giordani, 2020. "Curriculum-Based Course Timetabling with Student Flow, Soft Constraints, and Smoothing Objectives: an Application to a Real Case Study," SN Operations Research Forum, Springer, vol. 1(2), pages 1-21, June.
    3. Alexandre Lemos & Pedro T. Monteiro & Inês Lynce, 2021. "Disruptions in timetables: a case study at Universidade de Lisboa," Journal of Scheduling, Springer, vol. 24(1), pages 35-48, February.
    4. Niels-Christian F. Bagger & Simon Kristiansen & Matias Sørensen & Thomas R. Stidsen, 2019. "Flow formulations for curriculum-based course timetabling," Annals of Operations Research, Springer, vol. 280(1), pages 121-150, September.
    5. Bagger, Niels-Christian F. & Sørensen, Matias & Stidsen, Thomas R., 2019. "Dantzig–Wolfe decomposition of the daily course pattern formulation for curriculum-based course timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 430-446.
    6. Fabian Dunke & Stefan Nickel, 2023. "A matheuristic for customized multi-level multi-criteria university timetabling," Annals of Operations Research, Springer, vol. 328(2), pages 1313-1348, September.
    7. Mutsunori Banbara & Katsumi Inoue & Benjamin Kaufmann & Tenda Okimoto & Torsten Schaub & Takehide Soh & Naoyuki Tamura & Philipp Wanko, 2019. "$${\varvec{teaspoon}}$$ teaspoon : solving the curriculum-based course timetabling problems with answer set programming," Annals of Operations Research, Springer, vol. 275(1), pages 3-37, April.
    8. Rasmus Ø. Mikkelsen & Dennis S. Holm, 2022. "A parallelized matheuristic for the International Timetabling Competition 2019," Journal of Scheduling, Springer, vol. 25(4), pages 429-452, August.
    9. Niels-Christian Fink Bagger & Guy Desaulniers & Jacques Desrosiers, 2019. "Daily course pattern formulation and valid inequalities for the curriculum-based course timetabling problem," Journal of Scheduling, Springer, vol. 22(2), pages 155-172, April.
    10. Cristian D. Palma & Patrick Bornhardt, 2020. "Considering Section Balance in an Integer Optimization Model for the Curriculum-Based Course Timetabling Problem," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    11. Alexander Kiefer & Richard F. Hartl & Alexander Schnell, 2017. "Adaptive large neighborhood search for the curriculum-based course timetabling problem," Annals of Operations Research, Springer, vol. 252(2), pages 255-282, May.
    12. Michael Lindahl & Matias Sørensen & Thomas R. Stidsen, 2018. "A fix-and-optimize matheuristic for university timetabling," Journal of Heuristics, Springer, vol. 24(4), pages 645-665, August.
    13. Lindahl, Michael & Stidsen, Thomas & Sørensen, Matias, 2019. "Quality recovering of university timetables," European Journal of Operational Research, Elsevier, vol. 276(2), pages 422-435.
    14. Efstratios Rappos & Eric Thiémard & Stephan Robert & Jean-François Hêche, 2022. "A mixed-integer programming approach for solving university course timetabling problems," Journal of Scheduling, Springer, vol. 25(4), pages 391-404, August.
    15. Kadri Sylejmani & Edon Gashi & Adrian Ymeri, 2023. "Simulated annealing with penalization for university course timetabling," Journal of Scheduling, Springer, vol. 26(5), pages 497-517, October.
    16. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    17. Seizinger, Markus & Brunner, Jens O., 2023. "Optimized planning of nursing curricula in dual vocational schools focusing on the German health care system," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1223-1241.
    18. P. Solano Cutillas & D. Pérez-Perales & M. M. E. Alemany Díaz, 2022. "A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules," Operational Research, Springer, vol. 22(3), pages 2899-2942, July.
    19. Mats Carlsson & Sara Ceschia & Luca Gaspero & Rasmus Ørnstrup Mikkelsen & Andrea Schaerf & Thomas Jacob Riis Stidsen, 2023. "Exact and metaheuristic methods for a real-world examination timetabling problem," Journal of Scheduling, Springer, vol. 26(4), pages 353-367, August.
    20. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "An overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 313-349, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:266:y:2018:i:1:p:35-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.