IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v226y2013i2p301-312.html
   My bibliography  Save this article

Modelling activities at a neurological rehabilitation unit

Author

Listed:
  • Griffiths, J.D.
  • Williams, J.E.
  • Wood, R.M.

Abstract

A queuing model of a specialist neurological rehabilitation unit is studied. The application is to the Neurological Rehabilitation Centre at Rookwood Hospital (Cardiff, UK), the national rehabilitation unit for Wales. Due to high demand this 21-bed inpatient facility is nearly always at maximum occupancy, and with a significant bed-cost per day this makes it a prime candidate for mathematical modelling. Central to this study is the concept that treatment intensity has an effect on patient length of stay. The model is constructed in four stages. First, appropriate patient groups are determined based on a number of patient-related attributes. Second, a purpose-built scheduling program is used to deduce typical levels of treatment to patients of each group. These are then used to estimate the mean length of stay for each patient group. Finally, the queuing model is constructed. This consists of a number of disconnected homogeneous server queuing systems; one for each patient group. A Coxian phase-type distribution is fitted to the length of time from admission until discharge readiness and an exponential distribution models the remainder of time until discharge. Some hypothetical scenarios suggested by senior management are then considered and compared on the grounds of a number of performance measures and cost implications.

Suggested Citation

  • Griffiths, J.D. & Williams, J.E. & Wood, R.M., 2013. "Modelling activities at a neurological rehabilitation unit," European Journal of Operational Research, Elsevier, vol. 226(2), pages 301-312.
  • Handle: RePEc:eee:ejores:v:226:y:2013:i:2:p:301-312
    DOI: 10.1016/j.ejor.2012.10.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712008028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.10.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S McClean & P Millard, 2007. "Where to treat the older patient? Can Markov models help us better understand the relationship between hospital and community care?," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 255-261, February.
    2. Paul Harper & Evandro Leite Jr., 2008. "TreeWorks: Advances in Scalable Decision Trees," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 3(4), pages 53-68, October.
    3. G. J. Taylor & S. I. McClean & P. H. Millard, 1998. "Using a continuous‐time Markov model with Poisson arrivals to describe the movements of geriatric patients," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 14(2), pages 165-174, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kozlowski, Dawid & Worthington, Dave, 2015. "Use of queue modelling in the analysis of elective patient treatment governed by a maximum waiting time policy," European Journal of Operational Research, Elsevier, vol. 244(1), pages 331-338.
    2. Marynissen, Joren & Demeulemeester, Erik, 2019. "Literature review on multi-appointment scheduling problems in hospitals," European Journal of Operational Research, Elsevier, vol. 272(2), pages 407-419.
    3. Gogi, Anastasia & Tako, Antuela A. & Robinson, Stewart, 2016. "An experimental investigation into the role of simulation models in generating insights," European Journal of Operational Research, Elsevier, vol. 249(3), pages 931-944.
    4. Richard M Wood & Christopher J McWilliams & Matthew J Thomas & Christopher P Bourdeaux & Christos Vasilakis, 2020. "COVID-19 scenario modelling for the mitigation of capacity-dependent deaths in intensive care," Health Care Management Science, Springer, vol. 23(3), pages 315-324, September.
    5. Jennifer Gillespie & Sally McClean & Lalit Garg & Maria Barton & Bryan Scotney & Ken Fullerton, 2016. "A multi-phase DES modelling framework for patient-centred care," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(10), pages 1239-1249, October.
    6. De Vuyst, Stijn & Bruneel, Herwig & Fiems, Dieter, 2014. "Computationally efficient evaluation of appointment schedules in health care," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1142-1154.
    7. Sally McClean, 2021. "Using Markov Models to Characterize and Predict Process Target Compliance," Mathematics, MDPI, vol. 9(11), pages 1-12, May.
    8. Yang, Xiaopeng & Zheng, Danheng & Sieminowski, Tammy & Paradi, Joseph C., 2015. "A dynamic benchmarking system for assessing the recovery of inpatients: Evidence from the neurorehabilitation process," European Journal of Operational Research, Elsevier, vol. 240(2), pages 582-591.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harper, P.R. & Knight, V.A. & Marshall, A.H., 2012. "Discrete Conditional Phase-type models utilising classification trees: Application to modelling health service capacities," European Journal of Operational Research, Elsevier, vol. 219(3), pages 522-530.
    2. Fanwen Meng & Kiok Teow & Chee Ooi & Bee Heng & Seow Tay, 2015. "Analysis of patient waiting time governed by a generic maximum waiting time policy with general phase-type approximations," Health Care Management Science, Springer, vol. 18(3), pages 267-278, September.
    3. Casucci, Sabrina & Lin, Li & Nikolaev, Alexander, 2018. "Modeling the impact of care transition programs on patient outcomes and 30 day hospital readmissions," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 70-79.
    4. Nikolaos Stavropoulos & Alexandra Papadopoulou & Pavlos Kolias, 2021. "Evaluating the Efficiency of Off-Ball Screens in Elite Basketball Teams via Second-Order Markov Modelling," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
    5. Bruce Jones & Sally McClean & David Stanford, 2019. "Modelling mortality and discharge of hospitalized stroke patients using a phase-type recovery model," Health Care Management Science, Springer, vol. 22(4), pages 570-588, December.
    6. P.-C. G. Vassiliou, 2020. "Laws of Large Numbers for Non-Homogeneous Markov Systems," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1631-1658, December.
    7. Jennifer Gillespie & Sally McClean & Bryan Scotney & Lalit Garg & Maria Barton & Ken Fullerton, 2011. "Costing hospital resources for stroke patients using phase-type models," Health Care Management Science, Springer, vol. 14(3), pages 279-291, September.
    8. Gang Du & Xi Liang & Chuanwang Sun, 2017. "Scheduling Optimization of Home Health Care Service Considering Patients’ Priorities and Time Windows," Sustainability, MDPI, vol. 9(2), pages 1-22, February.
    9. P.-C.G. Vassiliou, 2021. "Non-Homogeneous Markov Set Systems," Mathematics, MDPI, vol. 9(5), pages 1-25, February.
    10. P. -C. G. Vassiliou, 2020. "Rate of Convergence and Periodicity of the Expected Population Structure of Markov Systems that Live in a General State Space," Mathematics, MDPI, vol. 8(6), pages 1-23, June.
    11. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:226:y:2013:i:2:p:301-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.