IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v220y2012i1p135-146.html
   My bibliography  Save this article

Folded overlapping variance estimators for simulation

Author

Listed:
  • Meterelliyoz, Melike
  • Alexopoulos, Christos
  • Goldsman, David

Abstract

We propose and analyze a new class of estimators for the variance parameter of a steady-state simulation output process. The new estimators are computed by averaging individual estimators from “folded” standardized time series based on overlapping batches composed of consecutive observations. The folding transformation on each batch can be applied more than once to produce an entire set of estimators. We establish the limiting distributions of the proposed estimators as the sample size tends to infinity while the ratio of the sample size to the batch size remains constant. We give analytical and Monte Carlo results showing that, compared to their counterparts computed from nonoverlapping batches, the new estimators have roughly the same bias but smaller variance. In addition, these estimators can be computed with order-of-sample-size work.

Suggested Citation

  • Meterelliyoz, Melike & Alexopoulos, Christos & Goldsman, David, 2012. "Folded overlapping variance estimators for simulation," European Journal of Operational Research, Elsevier, vol. 220(1), pages 135-146.
  • Handle: RePEc:eee:ejores:v:220:y:2012:i:1:p:135-146
    DOI: 10.1016/j.ejor.2012.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712000380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natalie M. Steiger & James R. Wilson, 2001. "Convergence Properties of the Batch Means Method for Simulation Output Analysis," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 277-293, November.
    2. Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & Gamze Tokol & James R. Wilson, 2007. "Overlapping Variance Estimators for Simulation," Operations Research, INFORMS, vol. 55(6), pages 1090-1103, December.
    3. Peter W. Glynn & Donald L. Iglehart, 1990. "Simulation Output Analysis Using Standardized Time Series," Mathematics of Operations Research, INFORMS, vol. 15(1), pages 1-16, February.
    4. Claudia Antonini & Christos Alexopoulos & David Goldsman & James Wilson, 2009. "Area variance estimators for simulation using folded standardized time series," IISE Transactions, Taylor & Francis Journals, vol. 41(2), pages 134-144.
    5. David Goldsman & Marc Meketon & Lee Schruben, 1990. "Properties of Standardized Time Series Weighted Area Variance Estimators," Management Science, INFORMS, vol. 36(5), pages 602-612, May.
    6. Halim Damerdji, 1995. "Mean-Square Consistency of the Variance Estimator in Steady-State Simulation Output Analysis," Operations Research, INFORMS, vol. 43(2), pages 282-291, April.
    7. Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & Natalie M. Steiger & Gamze Tokol & James R. Wilson, 2007. "Efficient Computation of Overlapping Variance Estimators for Simulation," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 314-327, August.
    8. Chiahon Chien & David Goldsman & Benjamin Melamed, 1997. "Large-Sample Results for Batch Means," Management Science, INFORMS, vol. 43(9), pages 1288-1295, September.
    9. Wheyming Tina Song & Bruce W. Schmeiser, 1995. "Optimal Mean-Squared-Error Batch Sizes," Management Science, INFORMS, vol. 41(1), pages 110-123, January.
    10. James M. Calvin & Marvin K. Nakayama, 2006. "Permuted Standardized Time Series for Steady-State Simulations," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 351-368, May.
    11. Lee Schruben, 1983. "Confidence Interval Estimation Using Standardized Time Series," Operations Research, INFORMS, vol. 31(6), pages 1090-1108, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & Gamze Tokol & James R. Wilson, 2007. "Overlapping Variance Estimators for Simulation," Operations Research, INFORMS, vol. 55(6), pages 1090-1103, December.
    2. Gamze Tokol & David Goldsman & Daniel H. Ockerman & James J. Swain, 1998. "Standardized Time Series Lp-Norm Variance Estimators for Simulations," Management Science, INFORMS, vol. 44(2), pages 234-245, February.
    3. David Goldsman & Seong-Hee Kim & William S. Marshall & Barry L. Nelson, 2002. "Ranking and Selection for Steady-State Simulation: Procedures and Perspectives," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 2-19, February.
    4. Kin Wai Chan & Chun Yip Yau, 2017. "High-order Corrected Estimator of Asymptotic Variance with Optimal Bandwidth," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 866-898, December.
    5. Seong-Hee Kim & Barry L. Nelson, 2006. "On the Asymptotic Validity of Fully Sequential Selection Procedures for Steady-State Simulation," Operations Research, INFORMS, vol. 54(3), pages 475-488, June.
    6. David F. Muñoz & Peter W. Glynn, 2001. "Multivariate Standardized Time Series for Steady-State Simulation Output Analysis," Operations Research, INFORMS, vol. 49(3), pages 413-422, June.
    7. Christos Alexopoulos & David Goldsman & Gamze Tokol, 2001. "Properties of Batched Quadratic-Form Variance Parameter Estimators for Simulations," INFORMS Journal on Computing, INFORMS, vol. 13(2), pages 149-156, May.
    8. Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & Natalie M. Steiger & Gamze Tokol & James R. Wilson, 2007. "Efficient Computation of Overlapping Variance Estimators for Simulation," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 314-327, August.
    9. Song, Wheyming Tina & Chih, Mingchang, 2013. "Run length not required: Optimal-mse dynamic batch means estimators for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 229(1), pages 114-123.
    10. David Goldsman & Keebom Kang & Andrew F. Seila, 1999. "Cramér-von Mises Variance Estimators for Simulations," Operations Research, INFORMS, vol. 47(2), pages 299-309, April.
    11. Song, Wheyming T. & Chih, Mingchang, 2010. "Extended dynamic partial-overlapping batch means estimators for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 203(3), pages 640-651, June.
    12. David Goldsman & Keebom Kang & Seong‐Hee Kim & Andrew F. Seila & Gamze Tokol, 2007. "Combining standardized time series area and Cramér–von Mises variance estimators," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 384-396, June.
    13. Halkos, George & Kevork, Ilias, 2002. "Confidence intervals in stationary autocorrelated time series," MPRA Paper 31840, University Library of Munich, Germany.
    14. Sheth-Voss, Pieter A. & Willemain, Thomas R. & Haddock, Jorge, 2005. "Estimating the steady-state mean from short transient simulations," European Journal of Operational Research, Elsevier, vol. 162(2), pages 403-417, April.
    15. L. Jeff Hong & Guangwu Liu, 2010. "Pathwise Estimation of Probability Sensitivities Through Terminating or Steady-State Simulations," Operations Research, INFORMS, vol. 58(2), pages 357-370, April.
    16. Tûba Aktaran‐Kalaycı & Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & James R. Wilson, 2007. "Exact expected values of variance estimators for simulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 397-410, June.
    17. Halkos, George & Kevork, Ilias, 2006. "Estimating population means in covariance stationary process," MPRA Paper 31843, University Library of Munich, Germany.
    18. Song, Wheyming Tina, 2019. "The Song rule outperforms optimal-batch-size variance estimators in simulation output analysis," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1072-1082.
    19. Song, Wheyming Tina, 1996. "On the estimation of optimal batch sizes in the analysis of simulation output," European Journal of Operational Research, Elsevier, vol. 88(2), pages 304-319, January.
    20. Ying Liu & Dootika Vats & James M. Flegal, 2022. "Batch Size Selection for Variance Estimators in MCMC," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 65-93, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:220:y:2012:i:1:p:135-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.