IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v207y2010i2p620-632.html
   My bibliography  Save this article

Using modifications to Grover's Search algorithm for quantum global optimization

Author

Listed:
  • Liu, Yipeng
  • Koehler, Gary J.

Abstract

We study the problem of finding a global optimal solution to discrete optimization problems using a heuristic based on quantum computing methods. (Knowledge of quantum computing ideas is not necessary to read this paper.) We focus on a successful quantum computing method introduced by Baritompa, Bulger, and Wood, that we refer to as the BBW algorithm, and develop two modifications. First, we modify the BBW algorithm to achieve a dramatic speedup that lets us extend the known BBW static schedule from 33 to 43 points, thereby increasing its applicability. We further modify it by converting it from a static method to a dynamic one. Experimental results show the value of this latter modification.

Suggested Citation

  • Liu, Yipeng & Koehler, Gary J., 2010. "Using modifications to Grover's Search algorithm for quantum global optimization," European Journal of Operational Research, Elsevier, vol. 207(2), pages 620-632, December.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:2:p:620-632
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00395-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vasek Chvátal, 1980. "Hard Knapsack Problems," Operations Research, INFORMS, vol. 28(6), pages 1402-1411, December.
    2. Ghosh, Diptesh & Chakravarti, Nilotpal & Sierksma, Gerard, 2006. "Sensitivity analysis of a greedy heuristic for knapsack problems," European Journal of Operational Research, Elsevier, vol. 169(1), pages 340-350, February.
    3. Zelda Zabinsky & David Bulger & Charoenchai Khompatraporn, 2010. "Stopping and restarting strategy for stochastic sequential search in global optimization," Journal of Global Optimization, Springer, vol. 46(2), pages 273-286, February.
    4. Andonov, R. & Poirriez, V. & Rajopadhye, S., 2000. "Unbounded knapsack problem: Dynamic programming revisited," European Journal of Operational Research, Elsevier, vol. 123(2), pages 394-407, June.
    5. Balev, Stefan & Yanev, Nicola & Freville, Arnaud & Andonov, Rumen, 2008. "A dynamic programming based reduction procedure for the multidimensional 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 186(1), pages 63-76, April.
    6. Derpich, Ivan & Vera, Jorge R., 2006. "Improving the efficiency of the Branch and Bound algorithm for integer programming based on "flatness" information," European Journal of Operational Research, Elsevier, vol. 174(1), pages 92-101, October.
    7. Chia‐Shin Chung & Ming S. Hung & Walter O. Rom, 1988. "A hard knapsack problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(1), pages 85-98, February.
    8. D. Bulger & W. P. Baritompa & G. R. Wood, 2003. "Implementing Pure Adaptive Search with Grover's Quantum Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 116(3), pages 517-529, March.
    9. Kohli, Rajeev & Krishnamurti, Ramesh & Mirchandani, Prakash, 2004. "Average performance of greedy heuristics for the integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 154(1), pages 36-45, April.
    10. Billionnet, Alain & Soutif, Eric, 2004. "An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 157(3), pages 565-575, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Lara & Renato Portugal & Carlile Lavor, 2014. "A new hybrid classical-quantum algorithm for continuous global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 317-331, October.
    2. Yipeng Liu & Gary Koehler, 2012. "A hybrid method for quantum global optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 607-626, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zonghao Gu & George L. Nemhauser & Martin W. P. Savelsbergh, 1999. "Lifted Cover Inequalities for 0-1 Integer Programs: Complexity," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 117-123, February.
    2. Huang, Ping H. & Lawley, Mark & Morin, Thomas, 2011. "Tight bounds for periodicity theorems on the unbounded Knapsack problem," European Journal of Operational Research, Elsevier, vol. 215(2), pages 319-324, December.
    3. Schauer, Joachim, 2016. "Asymptotic behavior of the quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 255(2), pages 357-363.
    4. Becker, Henrique & Buriol, Luciana S., 2019. "An empirical analysis of exact algorithms for the unbounded knapsack problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 84-99.
    5. Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
    6. Yipeng Liu & Gary Koehler, 2012. "A hybrid method for quantum global optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 607-626, March.
    7. Elhedhli, Samir & Naoum-Sawaya, Joe, 2015. "Improved branching disjunctions for branch-and-bound: An analytic center approach," European Journal of Operational Research, Elsevier, vol. 247(1), pages 37-45.
    8. Yuning Chen & Jin-Kao Hao, 2015. "Iterated responsive threshold search for the quadratic multiple knapsack problem," Annals of Operations Research, Springer, vol. 226(1), pages 101-131, March.
    9. Hao, Xinye & Zheng, Li & Li, Na & Zhang, Canrong, 2022. "Integrated bin packing and lot-sizing problem considering the configuration-dependent bin packing process," European Journal of Operational Research, Elsevier, vol. 303(2), pages 581-592.
    10. Britta Schulze & Michael Stiglmayr & Luís Paquete & Carlos M. Fonseca & David Willems & Stefan Ruzika, 2020. "On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 107-132, August.
    11. G. R. Wood & D. W. Bulger & W. P. Baritompa & D. L. J. Alexander, 2006. "Backtracking Adaptive Search: Distribution of Number of Iterations to Convergence," Journal of Optimization Theory and Applications, Springer, vol. 128(3), pages 547-562, March.
    12. Chiranjit Changdar & Rajat Kumar Pal & Ghanshaym Singha Mahapatra & Abhinandan Khan, 2020. "A genetic algorithm based approach to solve multi-resource multi-objective knapsack problem for vegetable wholesalers in fuzzy environment," Operational Research, Springer, vol. 20(3), pages 1321-1352, September.
    13. Yoon, Yourim & Kim, Yong-Hyuk & Moon, Byung-Ro, 2012. "A theoretical and empirical investigation on the Lagrangian capacities of the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 366-376.
    14. Rong, Aiying & Figueira, José Rui, 2013. "A reduction dynamic programming algorithm for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 231(2), pages 299-313.
    15. Leonardo Boncinelli & Alessio Muscillo & Paolo Pin, 2022. "Efficiency and Stability in a Process of Teams Formation," Dynamic Games and Applications, Springer, vol. 12(4), pages 1101-1129, December.
    16. Zheng Peng & Donghua Wu & Wenxing Zhu, 2016. "The robust constant and its applications in random global search for unconstrained global optimization," Journal of Global Optimization, Springer, vol. 64(3), pages 469-482, March.
    17. Y-J Seong & Y-G G & M-K Kang & C-W Kang, 2004. "An improved branch and bound algorithm for a strongly correlated unbounded knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(5), pages 547-552, May.
    18. Cao, Chengxuan & Gao, Ziyou & Li, Keping, 2012. "Capacity allocation problem with random demands for the rail container carrier," European Journal of Operational Research, Elsevier, vol. 217(1), pages 214-221.
    19. Benjamin Lev, 2005. "Book Reviews," Interfaces, INFORMS, vol. 35(4), pages 339-345, August.
    20. Giulia Pedrielli & K. Selcuk Candan & Xilun Chen & Logan Mathesen & Alireza Inanalouganji & Jie Xu & Chun-Hung Chen & Loo Hay Lee, 2019. "Generalized Ordinal Learning Framework (GOLF) for Decision Making with Future Simulated Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-35, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:2:p:620-632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.