IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v207y2010i1p70-77.html
   My bibliography  Save this article

Scheduling multiple orders per job in a single machine to minimize total completion time

Author

Listed:
  • Mason, Scott J.
  • Chen, Jen-Shiang

Abstract

This paper deals with a single-machine scheduling problem with multiple orders per job (MOJ) considerations. Both lot processing machines and item processing machines are also examined. There are two primary decisions that must be made in the proposed problem: (1) how to group the orders together, and (2) how to schedule the jobs once they are formed. In order to obtain the optimal solution to a scheduling problem, these two decisions should be made simultaneously. The performance measure is the total completion time of all orders. Two mixed binary integer programming models are developed to optimally solve this problem. Also, two efficient heuristics are proposed for solving large-sized problems. Computational results are provided to demonstrate the efficiency of the models and the effectiveness of the heuristics.

Suggested Citation

  • Mason, Scott J. & Chen, Jen-Shiang, 2010. "Scheduling multiple orders per job in a single machine to minimize total completion time," European Journal of Operational Research, Elsevier, vol. 207(1), pages 70-77, November.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:1:p:70-77
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00261-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laub, Jeffrey D. & Fowler, John W. & Keha, Ahmet B., 2007. "Minimizing makespan with multiple-orders-per-job in a two-machine flowshop," European Journal of Operational Research, Elsevier, vol. 182(1), pages 63-79, October.
    2. Jagadish Jampani & Scott Mason, 2008. "Column generation heuristics for multiple machine, multiple orders per job scheduling problems," Annals of Operations Research, Springer, vol. 159(1), pages 261-273, March.
    3. Vishnu Erramilli & Scott Mason, 2008. "Multiple orders per job batch scheduling with incompatible jobs," Annals of Operations Research, Springer, vol. 159(1), pages 245-260, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    2. Oleh Sobeyko & Lars Mönch, 2015. "Grouping genetic algorithms for solving single machine multiple orders per job scheduling problems," Annals of Operations Research, Springer, vol. 235(1), pages 709-739, December.
    3. Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oleh Sobeyko & Lars Mönch, 2015. "Grouping genetic algorithms for solving single machine multiple orders per job scheduling problems," Annals of Operations Research, Springer, vol. 235(1), pages 709-739, December.
    2. Artur Alves Pessoa & Teobaldo Bulhões & Vitor Nesello & Anand Subramanian, 2022. "Exact Approaches for Single Machine Total Weighted Tardiness Batch Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1512-1530, May.
    3. Eduardo Queiroga & Rian G. S. Pinheiro & Quentin Christ & Anand Subramanian & Artur A. Pessoa, 2021. "Iterated local search for single machine total weighted tardiness batch scheduling," Journal of Heuristics, Springer, vol. 27(3), pages 353-438, June.
    4. Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:1:p:70-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.