IDEAS home Printed from
   My bibliography  Save this article

Nondifferentiable multiobjective programming under generalized dI-invexity


  • Slimani, Hachem
  • Radjef, Mohammed Said


In this paper, we are concerned with a nondifferentiable multiobjective programming problem with inequality constraints. We introduce new concepts of dI-invexity and generalized dI-invexity in which each component of the objective and constraint functions is directionally differentiable in its own direction di. New Fritz-John type necessary and Karush-Kuhn-Tucker type necessary and sufficient optimality conditions are obtained for a feasible point to be weakly efficient, efficient or properly efficient. Moreover, we prove weak, strong, converse and strict duality results for a Mond-Weir type dual under various types of generalized dI-invexity assumptions.

Suggested Citation

  • Slimani, Hachem & Radjef, Mohammed Said, 2010. "Nondifferentiable multiobjective programming under generalized dI-invexity," European Journal of Operational Research, Elsevier, vol. 202(1), pages 32-41, April.
  • Handle: RePEc:eee:ejores:v:202:y:2010:i:1:p:32-41

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Fulga, C. & Preda, V., 2009. "Nonlinear programming with E-preinvex and local E-preinvex functions," European Journal of Operational Research, Elsevier, vol. 192(3), pages 737-743, February.
    2. Mishra, S. K. & Wang, S. Y. & Lai, K. K., 2005. "Nondifferentiable multiobjective programming under generalized d-univexity," European Journal of Operational Research, Elsevier, vol. 160(1), pages 218-226, January.
    3. Stancu-Minasian, I.M., 2006. "Optimality and duality in nonlinear programming involving semilocally B-preinvex and related functions," European Journal of Operational Research, Elsevier, vol. 173(1), pages 47-58, August.
    4. Antczak, Tadeusz, 2002. "Multiobjective programming under d-invexity," European Journal of Operational Research, Elsevier, vol. 137(1), pages 28-36, February.
    5. Suneja, S.K. & Khurana, Seema & Vani, 2008. "Generalized nonsmooth invexity over cones in vector optimization," European Journal of Operational Research, Elsevier, vol. 186(1), pages 28-40, April.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:202:y:2010:i:1:p:32-41. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.