IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v197y2009i1p154-165.html
   My bibliography  Save this article

Facility placement with sub-aisle design in an existing layout

Author

Listed:
  • Zhang, Min
  • Savas, Selçuk
  • Batta, Rajan
  • Nagi, Rakesh

Abstract

In this paper, we consider the integration of facility placement in an existing layout and the configuration of one or two connecting sub-aisles. This is relevant, for example, when placing a new machine/department on a shop floor with existing machines/departments and an existing aisle structure. Our work is motivated by the work of Savas et al. [Savas, S., Batta, R., Nagi, R., 2002. Finite-size facility placement in the presence of barriers to rectilinear travel. Operations Research 50 (6), 1018-1031], that considered the optimal planar placement of a finite-size facility in the presence of existing facilities. Our work differs from theirs in that we consider material handling to be restricted to the aisle structure. We do not allow the newly placed facility to overlap with existing facilities or with the aisle structure. Facilities are rectangular and travel is limited to new or existing aisles. We show that there are a finite number of candidate placements for the new facility. Algorithms are developed to find the optimal placement and the corresponding configurations for the sub-aisles. Complexity of the solution method is analyzed. Also, a numerical example is provided to explore the impact of the number of sub-aisles added.

Suggested Citation

  • Zhang, Min & Savas, Selçuk & Batta, Rajan & Nagi, Rakesh, 2009. "Facility placement with sub-aisle design in an existing layout," European Journal of Operational Research, Elsevier, vol. 197(1), pages 154-165, August.
  • Handle: RePEc:eee:ejores:v:197:y:2009:i:1:p:154-165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00489-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Selçuk Savaş & Rajan Batta & Rakesh Nagi, 2002. "Finite-Size Facility Placement in the Presence of Barriers to Rectilinear Travel," Operations Research, INFORMS, vol. 50(6), pages 1018-1031, December.
    2. Alfred A. Kuehn & Michael J. Hamburger, 1963. "A Heuristic Program for Locating Warehouses," Management Science, INFORMS, vol. 9(4), pages 643-666, July.
    3. Katz, I. Norman & Cooper, Leon, 1981. "Facility location in the presence of forbidden regions, I: Formulation and the case of Euclidean distance with one forbidden circle," European Journal of Operational Research, Elsevier, vol. 6(2), pages 166-173, February.
    4. Sarkar, Avijit & Batta, Rajan & Nagi, Rakesh, 2007. "Placing a finite size facility with a center objective on a rectangular plane with barriers," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1160-1176, June.
    5. Kelachankuttu, Hari & Batta, Rajan & Nagi, Rakesh, 2007. "Contour line construction for a new rectangular facility in an existing layout with rectangular departments," European Journal of Operational Research, Elsevier, vol. 180(1), pages 149-162, July.
    6. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    7. Rajan Batta & Anjan Ghose & Udatta S. Palekar, 1989. "Locating Facilities on the Manhattan Metric with Arbitrarily Shaped Barriers and Convex Forbidden Regions," Transportation Science, INFORMS, vol. 23(1), pages 26-36, February.
    8. Richard C. Larson & Ghazala Sadiq, 1983. "Facility Locations with the Manhattan Metric in the Presence of Barriers to Travel," Operations Research, INFORMS, vol. 31(4), pages 652-669, August.
    9. Pavankumar Nandikonda & Rajan Batta & Rakesh Nagi, 2003. "Locating a 1-Center on a Manhattan Plane with “Arbitrarily” Shaped Barriers," Annals of Operations Research, Springer, vol. 123(1), pages 157-172, October.
    10. Butt, Steven E. & Cavalier, Tom M., 1996. "An efficient algorithm for facility location in the presence of forbidden regions," European Journal of Operational Research, Elsevier, vol. 90(1), pages 56-70, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masashi Miyagawa, 2017. "Continuous location model of a rectangular barrier facility," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 95-110, April.
    2. Irawan, Chandra Ade & Song, Xiang & Jones, Dylan & Akbari, Negar, 2017. "Layout optimisation for an installation port of an offshore wind farm," European Journal of Operational Research, Elsevier, vol. 259(1), pages 67-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canbolat, Mustafa S. & Wesolowsky, George O., 2010. "The rectilinear distance Weber problem in the presence of a probabilistic line barrier," European Journal of Operational Research, Elsevier, vol. 202(1), pages 114-121, April.
    2. Amiri-Aref, Mehdi & Farahani, Reza Zanjirani & Hewitt, Mike & Klibi, Walid, 2019. "Equitable location of facilities in a region with probabilistic barriers to travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 66-85.
    3. Masashi Miyagawa, 2017. "Continuous location model of a rectangular barrier facility," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 95-110, April.
    4. Bischoff, M. & Klamroth, K., 2007. "An efficient solution method for Weber problems with barriers based on genetic algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 22-41, February.
    5. Sarkar, Avijit & Batta, Rajan & Nagi, Rakesh, 2007. "Placing a finite size facility with a center objective on a rectangular plane with barriers," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1160-1176, June.
    6. P. Dearing & K. Klamroth & R. Segars, 2005. "Planar Location Problems with Block Distance and Barriers," Annals of Operations Research, Springer, vol. 136(1), pages 117-143, April.
    7. Masashi Miyagawa, 2012. "Rectilinear distance to a facility in the presence of a square barrier," Annals of Operations Research, Springer, vol. 196(1), pages 443-458, July.
    8. Klamroth, K., 2004. "Algebraic properties of location problems with one circular barrier," European Journal of Operational Research, Elsevier, vol. 154(1), pages 20-35, April.
    9. Kathrin Klamroth & Margaret M. Wiecek, 2002. "A Bi-Objective Median Location Problem With a Line Barrier," Operations Research, INFORMS, vol. 50(4), pages 670-679, August.
    10. Kelachankuttu, Hari & Batta, Rajan & Nagi, Rakesh, 2007. "Contour line construction for a new rectangular facility in an existing layout with rectangular departments," European Journal of Operational Research, Elsevier, vol. 180(1), pages 149-162, July.
    11. Klamroth, K., 2001. "A reduction result for location problems with polyhedral barriers," European Journal of Operational Research, Elsevier, vol. 130(3), pages 486-497, May.
    12. P.M. Dearing & H.W. Hamacher & K. Klamroth, 2002. "Dominating sets for rectilinear center location problems with polyhedral barriers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(7), pages 647-665, October.
    13. Selçuk Savaş & Rajan Batta & Rakesh Nagi, 2002. "Finite-Size Facility Placement in the Presence of Barriers to Rectilinear Travel," Operations Research, INFORMS, vol. 50(6), pages 1018-1031, December.
    14. Butt, Steven E. & Cavalier, Tom M., 1997. "Facility location in the presence of congested regions with the rectilinear distance metric," Socio-Economic Planning Sciences, Elsevier, vol. 31(2), pages 103-113, June.
    15. Avella, P. & Benati, S. & Canovas Martinez, L. & Dalby, K. & Di Girolamo, D. & Dimitrijevic, B. & Ghiani, G. & Giannikos, I. & Guttmann, N. & Hultberg, T. H. & Fliege, J. & Marin, A. & Munoz Marquez, , 1998. "Some personal views on the current state and the future of locational analysis," European Journal of Operational Research, Elsevier, vol. 104(2), pages 269-287, January.
    16. Pawel Kalczynski & Zvi Drezner, 2021. "The obnoxious facilities planar p-median problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 577-593, June.
    17. Murat Oğuz & Tolga Bektaş & Julia A Bennell & Jörg Fliege, 2016. "A modelling framework for solving restricted planar location problems using phi-objects," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(8), pages 1080-1096, August.
    18. Byrne, Thomas & Kalcsics, Jörg, 2022. "Conditional facility location problems with continuous demand and a polygonal barrier," European Journal of Operational Research, Elsevier, vol. 296(1), pages 22-43.
    19. Butt, Steven E. & Cavalier, Tom M., 1996. "An efficient algorithm for facility location in the presence of forbidden regions," European Journal of Operational Research, Elsevier, vol. 90(1), pages 56-70, April.
    20. Davood Shishebori & Lawrence Snyder & Mohammad Jabalameli, 2014. "A Reliable Budget-Constrained FL/ND Problem with Unreliable Facilities," Networks and Spatial Economics, Springer, vol. 14(3), pages 549-580, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:197:y:2009:i:1:p:154-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.