IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v195y2009i1p89-97.html
   My bibliography  Save this article

Single machine scheduling to minimize total weighted earliness subject to minimal number of tardy jobs

Author

Listed:
  • Wan, Guohua
  • Yen, Benjamin P.-C.

Abstract

Motivated by just-in-time manufacturing, we consider a single machine scheduling problem with dual criteria, i.e., the minimization of the total weighted earliness subject to minimum number of tardy jobs. We discuss several dominance properties of optimal solutions. We then develop a heuristic algorithm with time complexity O(n3) and a branch and bound algorithm to solve the problem. The computational experiments show that the heuristic algorithm is effective in terms of solution quality in many instances while the branch and bound algorithm is efficient for medium-size problems.

Suggested Citation

  • Wan, Guohua & Yen, Benjamin P.-C., 2009. "Single machine scheduling to minimize total weighted earliness subject to minimal number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 195(1), pages 89-97, May.
  • Handle: RePEc:eee:ejores:v:195:y:2009:i:1:p:89-97
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00162-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guner, Ertan & Erol, Serpil & Tani, Kazuo, 1998. "One machine scheduling to minimize the maximum earliness with minimum number of tardy jobs," International Journal of Production Economics, Elsevier, vol. 55(2), pages 213-219, July.
    2. Chris N. Potts & Luk N. Van Wassenhove, 1985. "A Branch and Bound Algorithm for the Total Weighted Tardiness Problem," Operations Research, INFORMS, vol. 33(2), pages 363-377, April.
    3. Wan, Guohua & Yen, Benjamin P. -C., 2002. "Tabu search for single machine scheduling with distinct due windows and weighted earliness/tardiness penalties," European Journal of Operational Research, Elsevier, vol. 142(2), pages 271-281, October.
    4. Mazzini, Renata & Armentano, Vinicius A., 2001. "A heuristic for single machine scheduling with early and tardy costs," European Journal of Operational Research, Elsevier, vol. 128(1), pages 129-146, January.
    5. M Azizoglu & M Koksalan & S K Koksalan, 2003. "Scheduling to minimize maximum earliness and number of tardy jobs where machine idle time is allowed," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 661-664, June.
    6. Nagar, Amit & Haddock, Jorge & Heragu, Sunderesh, 1995. "Multiple and bicriteria scheduling: A literature survey," European Journal of Operational Research, Elsevier, vol. 81(1), pages 88-104, February.
    7. Sridharan, V. & Zhou, Z., 1996. "A decision theory based scheduling procedure for single-machine weighted earliness and tardiness problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 292-301, October.
    8. Kenneth R. Baker & Gary D. Scudder, 1990. "Sequencing with Earliness and Tardiness Penalties: A Review," Operations Research, INFORMS, vol. 38(1), pages 22-36, February.
    9. Chand, Suresh & Schneeberger, Hans, 1988. "Single machine scheduling to minimize weighted earliness subject to no tardy jobs," European Journal of Operational Research, Elsevier, vol. 34(2), pages 221-230, March.
    10. Hino, Celso M. & Ronconi, Debora P. & Mendes, Andre B., 2005. "Minimizing earliness and tardiness penalties in a single-machine problem with a common due date," European Journal of Operational Research, Elsevier, vol. 160(1), pages 190-201, January.
    11. Pathumnakul, Supachai & Egbelu, Pius J., 2005. "Algorithm for minimizing weighted earliness penalty in single-machine problem," European Journal of Operational Research, Elsevier, vol. 161(3), pages 780-796, March.
    12. Xiaoqiang Cai & Sean Zhou, 1999. "Stochastic Scheduling on Parallel Machines Subject to Random Breakdowns to Minimize Expected Costs for Earliness and Tardy Jobs," Operations Research, INFORMS, vol. 47(3), pages 422-437, June.
    13. Koksalan, Murat & Burak Keha, Ahmet, 2003. "Using genetic algorithms for single-machine bicriteria scheduling problems," European Journal of Operational Research, Elsevier, vol. 145(3), pages 543-556, March.
    14. Chen, Chuen-Lung & Bulfin, Robert L., 1993. "Complexity of single machine, multi-criteria scheduling problems," European Journal of Operational Research, Elsevier, vol. 70(1), pages 115-125, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadian, Mohammad Mahdi & Salehipour, Amir & Cheng, T.C.E., 2021. "A meta-heuristic to solve the just-in-time job-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 288(1), pages 14-29.
    2. Feng Li & Zhi-Long Chen & Zhi-Long Chen, 2017. "Integrated Production, Inventory and Delivery Problems: Complexity and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 232-250, May.
    3. Janiak, Adam & Janiak, Władysław A. & Krysiak, Tomasz & Kwiatkowski, Tomasz, 2015. "A survey on scheduling problems with due windows," European Journal of Operational Research, Elsevier, vol. 242(2), pages 347-357.
    4. Grundel, Soesja & Çiftçi, Barış & Borm, Peter & Hamers, Herbert, 2013. "Family sequencing and cooperation," European Journal of Operational Research, Elsevier, vol. 226(3), pages 414-424.
    5. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    6. Grundel, S., 2015. "Essays on cooperation in resource allocation and scheduling," Other publications TiSEM c2d78915-6b6f-4f8b-b601-0, Tilburg University, School of Economics and Management.
    7. Andreas C. Nearchou, 2018. "Multicriteria scheduling optimization using an elitist multiobjective population heuristic: the h-NSDE algorithm," Journal of Heuristics, Springer, vol. 24(6), pages 817-851, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erenay, Fatih Safa & Sabuncuoglu, Ihsan & Toptal, Aysegül & Tiwari, Manoj Kumar, 2010. "New solution methods for single machine bicriteria scheduling problem: Minimization of average flowtime and number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 201(1), pages 89-98, February.
    2. Chen, Wei-Yang & Sheen, Gwo-Ji, 2007. "Single-machine scheduling with multiple performance measures: Minimizing job-dependent earliness and tardiness subject to the number of tardy jobs," International Journal of Production Economics, Elsevier, vol. 109(1-2), pages 214-229, September.
    3. Simon Thevenin & Nicolas Zufferey & Marino Widmer, 2016. "Order acceptance and scheduling with earliness and tardiness penalties," Journal of Heuristics, Springer, vol. 22(6), pages 849-890, December.
    4. Feng Li & Zhi-Long Chen & Zhi-Long Chen, 2017. "Integrated Production, Inventory and Delivery Problems: Complexity and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 232-250, May.
    5. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    6. Y Li & A Lim & B Rodrigues, 2004. "Crossdocking—JIT scheduling with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1342-1351, December.
    7. Esteve, B. & Aubijoux, C. & Chartier, A. & T'kindt, V., 2006. "A recovering beam search algorithm for the single machine Just-in-Time scheduling problem," European Journal of Operational Research, Elsevier, vol. 172(3), pages 798-813, August.
    8. Andreas C. Nearchou, 2018. "Multicriteria scheduling optimization using an elitist multiobjective population heuristic: the h-NSDE algorithm," Journal of Heuristics, Springer, vol. 24(6), pages 817-851, December.
    9. J N D Gupta & A J Ruiz-torres & S Webster, 2003. "Minimizing maximum tardiness and number of tardy jobs on parallel machines subject to minimum flow-time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1263-1274, December.
    10. Li, Kunpeng & Sivakumar, Appa Iyer & Ganesan, Viswanath Kumar, 2008. "Complexities and algorithms for synchronized scheduling of parallel machine assembly and air transportation in consumer electronics supply chain," European Journal of Operational Research, Elsevier, vol. 187(2), pages 442-455, June.
    11. J M S Valente & R A F S Alves, 2005. "Improved lower bounds for the early/tardy scheduling problem with no idle time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 604-612, May.
    12. Mosheiov, Gur, 2004. "Simultaneous minimization of total completion time and total deviation of job completion times," European Journal of Operational Research, Elsevier, vol. 157(2), pages 296-306, September.
    13. Vincent T’kindt & Karima Bouibede-Hocine & Carl Esswein, 2007. "Counting and enumeration complexity with application to multicriteria scheduling," Annals of Operations Research, Springer, vol. 153(1), pages 215-234, September.
    14. Lin, Shih-Wei & Chou, Shuo-Yan & Ying, Kuo-Ching, 2007. "A sequential exchange approach for minimizing earliness-tardiness penalties of single-machine scheduling with a common due date," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1294-1301, March.
    15. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    16. Koksalan, Murat & Burak Keha, Ahmet, 2003. "Using genetic algorithms for single-machine bicriteria scheduling problems," European Journal of Operational Research, Elsevier, vol. 145(3), pages 543-556, March.
    17. Lee, Sang M. & Asllani, Arben A., 2004. "Job scheduling with dual criteria and sequence-dependent setups: mathematical versus genetic programming," Omega, Elsevier, vol. 32(2), pages 145-153, April.
    18. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    19. Sivrikaya-Serifoglu, Funda & Ulusoy, Gunduz, 1998. "A bicriteria two-machine permutation flowshop problem," European Journal of Operational Research, Elsevier, vol. 107(2), pages 414-430, June.
    20. John J. Kanet & V. Sridharan, 2000. "Scheduling with Inserted Idle Time: Problem Taxonomy and Literature Review," Operations Research, INFORMS, vol. 48(1), pages 99-110, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:195:y:2009:i:1:p:89-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.