IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v505y2025ics0304380025001012.html
   My bibliography  Save this article

Forecasting the risk of Phytophthora cinnamomi related-decline in Mediterranean forest ecosystems under climate change scenarios

Author

Listed:
  • Cidre-González, Adrián
  • Ruiz-Gómez, Francisco José
  • Bonet, Francisco Javier
  • González-Moreno, Pablo

Abstract

P. cinnamomi is an invasive pathogen which threatens the evergreen oak and sweet chestnut ecosystems in the Mediterranean Basin. Understanding the distribution of this forest pathogen remains uncertain due to the challenges in accurately assessing their presence until symptoms become apparent, making it challenging to anticipate its occurrence. In this study, we investigated the distribution and suitability of P. cinnamomi in France, Italy, Portugal, and Spain implementing a hybrid model (i.e. correlative and process-based) with the validation of a total of 527 recorded occurrences. We used a correlative model incorporating two categories of abiotic environmental variables: edaphic and topographic. Additionally, we utilized three process-based models accounting for key climate factors and considering earth observation data with high temporal resolution. Specifically, we estimated survival under extreme minimum and maximum temperatures, as well as growth risk during the growing season as a proxy of the severity of the pathogen. The combination of these four models yielded a more reliable estimation of the pathogen's distribution. Our findings revealed that higher probability of P. cinnamomi presence currently stem from acidic and less nutrient rich soils. Among the process-based models, the spring growth risk model displayed the most significant variation across the study area, with an expected increase over time. Nevertheless, the survival of P. cinnamomi during summer is predicted to limit its presence in certain areas of the Iberian Peninsula in the long term, particularly under higher emissions scenarios. Interestingly, the results also indicate a potential enhancement in the growth of P. cinnamomi in some regions, while simultaneously noting a decrease in summer survival in those same areas. These observations underscore the complexity and dynamic nature of pathogen distribution and emphasize the importance of considering multiple factors to gain a comprehensive understanding of its potential impact.

Suggested Citation

  • Cidre-González, Adrián & Ruiz-Gómez, Francisco José & Bonet, Francisco Javier & González-Moreno, Pablo, 2025. "Forecasting the risk of Phytophthora cinnamomi related-decline in Mediterranean forest ecosystems under climate change scenarios," Ecological Modelling, Elsevier, vol. 505(C).
  • Handle: RePEc:eee:ecomod:v:505:y:2025:i:c:s0304380025001012
    DOI: 10.1016/j.ecolmodel.2025.111115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025001012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:505:y:2025:i:c:s0304380025001012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.