IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v501y2025ics0304380024003569.html
   My bibliography  Save this article

Quantile regression for estimating Douglas-fir natural regeneration potential using the R package quaxnat: Advanced ecological modeling for the management of nature conservation and silviculture

Author

Listed:
  • Axer, Maximilian
  • Schlicht, Robert
  • Blickensdörfer, Lukas

Abstract

Recent extreme weather conditions in Europe have led to widespread destruction of Norway spruce by storms and bark beetles, creating large clearings that need replanting. The shortage of planting material has shifted focus to natural regeneration processes, with Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) emerging as a potential substitute due to its growth performance and drought tolerance. This study introduces and applies methods for investigating the regeneration ecology of Douglas-fir, focusing on the potential density of established regeneration and its dependence on the distance to the nearest seed source.

Suggested Citation

  • Axer, Maximilian & Schlicht, Robert & Blickensdörfer, Lukas, 2025. "Quantile regression for estimating Douglas-fir natural regeneration potential using the R package quaxnat: Advanced ecological modeling for the management of nature conservation and silviculture," Ecological Modelling, Elsevier, vol. 501(C).
  • Handle: RePEc:eee:ecomod:v:501:y:2025:i:c:s0304380024003569
    DOI: 10.1016/j.ecolmodel.2024.110968
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024003569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Camille S. Delavaux & Thomas W. Crowther & Constantin M. Zohner & Niamh M. Robmann & Thomas Lauber & Johan Hoogen & Sara Kuebbing & Jingjing Liang & Sergio de-Miguel & Gert-Jan Nabuurs & Peter B. Reic, 2023. "Native diversity buffers against severity of non-native tree invasions," Nature, Nature, vol. 621(7980), pages 773-781, September.
    2. Camille S. Delavaux & Thomas W. Crowther & Constantin M. Zohner & Niamh M. Robmann & Thomas Lauber & Johan Hoogen & Sara Kuebbing & Jingjing Liang & Sergio de-Miguel & Gert-Jan Nabuurs & Peter B. Reic, 2023. "Author Correction: Native diversity buffers against severity of non-native tree invasions," Nature, Nature, vol. 622(7982), pages 2-2, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai Cheng & Zekang Liu & Wei Song & Xue Chen & Zhijie Zhang & Bo Li & Mark Kleunen & Jihua Wu, 2024. "Biodiversity increases resistance of grasslands against plant invasions under multiple environmental changes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Alessio Russo & Manuel Esperon-Rodriguez & Annick St-Denis & Mark G. Tjoelker, 2025. "Native vs. Non-Native Plants: Public Preferences, Ecosystem Services, and Conservation Strategies for Climate-Resilient Urban Green Spaces," Land, MDPI, vol. 14(5), pages 1-22, April.
    3. Han, Lubin & Leng, Guoyong, 2024. "Significant changes in global maize yield sensitivity to vapor pressure deficit during 1983–2010," Agricultural Water Management, Elsevier, vol. 305(C).
    4. Qiao, Renlu & Wu, Zhiqiang & Jiang, Qingrui & Liu, Xiaochang & Gao, Shuo & Xia, Li & Yang, Tianren, 2024. "The nonlinear influence of land conveyance on urban carbon emissions: An interpretable ensemble learning-based approach," Land Use Policy, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:501:y:2025:i:c:s0304380024003569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.