IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v490y2024ics0304380024000243.html
   My bibliography  Save this article

Simulating implications of fish behavioral response for managing hypoxia in estuaries with spatial dissolved oxygen variability

Author

Listed:
  • Fulford, Richard S.
  • Tolan, Jessica L.
  • Hagy, James D.

Abstract

Hypoxia, or low dissolved oxygen (DO), is a widespread water quality problem affecting estuaries and coastal waters around the world. Water quality criteria for DO have been established for every estuary in the US and are an important part of the regulatory response to nutrient pollution and associated anthropogenic eutrophication. Experimental studies examining effects of low DO exposure have been to quantify outcomes based on hypoxia effects observed in individuals, such as increased mortality or growth impairment. Although laboratory exposure tests provide useful benchmarks for policy development, most of those considered in policy development did not consider behavioral responses to low DO. However, experimental research has shown that behavioral responses occur, and that behavior modifies exposure to low DO conditions. Here we begin development of a spatially explicit individual based model (SEIBM) intended to project behavioral outcomes of exposure to spatially variable hypoxia in estuaries. Our goal is to consider the responsiveness of an SEIBM to both different behavioral hypotheses, as well as realistic spatial patterns in hypoxia. A sensitivity analysis was used to explore responsiveness based on two movement strategies: avoidance and behavioral switching. We tested the sensitivity of a suite of movement parameters to changes in spatial patterns representative of an index estuary. The sensitivity analysis demonstrated that model responses to changes in movement strategies include biologically meaningful changes in site occupancy and movement distance centered on individual behavior near a normoxic–hypoxic boundary. Further, the model demonstrated important sensitivity to realistic changes in movement parameters, including the size and shape of the individual neighborhood describing knowledge useful for movement decisions. These results support the utility of the developed SEIBM for exploring behavioral responses of fish to hypoxia in estuaries. The sensitivity analysis also demonstrates parameter values that must be set based on empirical data and are sensitive to data quality. These results will be used to further develop the model and to plan field and laboratory studies to support model parametrization. The end goal is a model framework that can inform policy decisions regarding hypoxia resulting from anthropogenic nutrient loading in estuaries.

Suggested Citation

  • Fulford, Richard S. & Tolan, Jessica L. & Hagy, James D., 2024. "Simulating implications of fish behavioral response for managing hypoxia in estuaries with spatial dissolved oxygen variability," Ecological Modelling, Elsevier, vol. 490(C).
  • Handle: RePEc:eee:ecomod:v:490:y:2024:i:c:s0304380024000243
    DOI: 10.1016/j.ecolmodel.2024.110635
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024000243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:490:y:2024:i:c:s0304380024000243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.