IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v384y2018icp241-248.html
   My bibliography  Save this article

Diel light cycle as a key factor for modelling phytoplankton biogeography and diversity

Author

Listed:
  • Tsakalakis, Ioannis
  • Pahlow, Markus
  • Oschlies, Andreas
  • Blasius, Bernd
  • Ryabov, Alexey B.

Abstract

Understanding the mechanisms driving species biogeography and biodiversity remains a major challenge in phytoplankton ecology. Using a model of two phytoplankton species with a gleaner-opportunist trade-off and competing for light and a limiting nutrient, we show that the diel light cycle may be an essential factor to explain large-scale ecological patterns. When only the seasonal light cycle is considered (control scenario) the model predicts that, independently of the nutrient supply, gleaners should dominate across all latitudes and opportunists can obtain a temporal niche only at high latitudes. However, the diel light cycle makes the competition outcome also a function of nutrient supply by affecting the amplitude of diel nutrient oscillations, with gleaners dominating when nutrient supply is low, opportunists when nutrient supply is high, and both species coexisting at intermediate levels of nutrient supply. The combined effects of seasonal and diel light cycles (diel scenario) shape a latitudinal diversity gradient with decreasing diversity towards higher latitudes and a unimodal dependence of diversity on nutrient supply and, therefore, on ecosystem productivity. The proposed mechanism can help interpret the biogeography of major phytoplankton functional groups in the global ocean and link them with large-scale biodiversity patterns.

Suggested Citation

  • Tsakalakis, Ioannis & Pahlow, Markus & Oschlies, Andreas & Blasius, Bernd & Ryabov, Alexey B., 2018. "Diel light cycle as a key factor for modelling phytoplankton biogeography and diversity," Ecological Modelling, Elsevier, vol. 384(C), pages 241-248.
  • Handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:241-248
    DOI: 10.1016/j.ecolmodel.2018.06.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.06.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brewin, Robert J.W. & Sathyendranath, Shubha & Hirata, Takafumi & Lavender, Samantha J. & Barciela, Rosa M. & Hardman-Mountford, Nick J., 2010. "A three-component model of phytoplankton size class for the Atlantic Ocean," Ecological Modelling, Elsevier, vol. 221(11), pages 1472-1483.
    2. S. M. Vallina & M. J. Follows & S. Dutkiewicz & J. M. Montoya & P. Cermeno & M. Loreau, 2014. "Global relationship between phytoplankton diversity and productivity in the ocean," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    3. Xabier Irigoien & Jef Huisman & Roger P. Harris, 2004. "Global biodiversity patterns of marine phytoplankton and zooplankton," Nature, Nature, vol. 429(6994), pages 863-867, June.
    4. Kevin R. Arrigo, 2005. "Marine microorganisms and global nutrient cycles," Nature, Nature, vol. 437(7057), pages 349-355, September.
    5. Prowe, A.E. Friederike & Pahlow, Markus & Oschlies, Andreas, 2012. "Controls on the diversity–productivity relationship in a marine ecosystem model," Ecological Modelling, Elsevier, vol. 225(C), pages 167-176.
    6. Christopher A. Klausmeier & Elena Litchman & Tanguy Daufresne & Simon A. Levin, 2004. "Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton," Nature, Nature, vol. 429(6988), pages 171-174, May.
    7. Maayke Stomp & Jef Huisman & Floris de Jongh & Annelies J. Veraart & Daan Gerla & Machteld Rijkeboer & Bas W. Ibelings & Ute I. A. Wollenzien & Lucas J. Stal, 2004. "Adaptive divergence in pigment composition promotes phytoplankton biodiversity," Nature, Nature, vol. 432(7013), pages 104-107, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joydev Chattopadhyay & Ezio Venturino & Samrat Chatterjee, 2013. "Aggregation of toxin-producing phytoplankton acts as a defence mechanism – a model-based study," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 19(2), pages 159-174, April.
    2. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    3. Joseph George Ray & Prasanthkumar Santhakumaran & Santhoshkumar Kookal, 2021. "Phytoplankton communities of eutrophic freshwater bodies (Kerala, India) in relation to the physicochemical water quality parameters," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 259-290, January.
    4. Wan, Zhenwen & Bi, Hongsheng, 2014. "Comparing model scenarios of variable plankton N/P ratio versus the constant one for the application in the Baltic Sea," Ecological Modelling, Elsevier, vol. 272(C), pages 28-39.
    5. Doyeong Ku & Yeon-Ji Chae & Yerim Choi & Chang Woo Ji & Young-Seuk Park & Ihn-Sil Kwak & Yong-Jae Kim & Kwang-Hyeon Chang & Hye-Ji Oh, 2022. "Optimal Method for Biomass Estimation in a Cladoceran Species, Daphnia Magna (Straus, 1820): Evaluating Length–Weight Regression Equations and Deriving Estimation Equations Using Body Length, Width an," Sustainability, MDPI, vol. 14(15), pages 1-10, July.
    6. Zhang, Haibo & Richardson, Patricia A. & Belayneh, Bruk E. & Ristvey, Andrew & Lea-Cox, John & Copes, Warren E. & Moorman, Gary W. & Hong, Chuanxue, 2015. "Characterization of water quality in stratified nursery recycling irrigation reservoirs," Agricultural Water Management, Elsevier, vol. 160(C), pages 76-83.
    7. Li, Yu & Waite, Anya M. & Gal, Gideon & Hipsey, Matthew R., 2013. "An analysis of the relationship between phytoplankton internal stoichiometry and water column N:P ratios in a dynamic lake environment," Ecological Modelling, Elsevier, vol. 252(C), pages 196-213.
    8. Clark, James R. & Daines, Stuart J. & Lenton, Timothy M. & Watson, Andrew J. & Williams, Hywel T.P., 2011. "Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters," Ecological Modelling, Elsevier, vol. 222(23), pages 3823-3837.
    9. Dittrich, M. & Wehrli, B. & Reichert, P., 2009. "Lake sediments during the transient eutrophication period: Reactive-transport model and identifiability study," Ecological Modelling, Elsevier, vol. 220(20), pages 2751-2769.
    10. Jean-Éric Tremblay & Dominique Robert & Diana Varela & Connie Lovejoy & Gérald Darnis & R. Nelson & Akash Sastri, 2012. "Current state and trends in Canadian Arctic marine ecosystems: I. Primary production," Climatic Change, Springer, vol. 115(1), pages 161-178, November.
    11. Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
    12. Thomas J. Browning & C. Mark Moore, 2023. "Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Jiancai Deng & Fang Chen & Weiping Hu & Xin Lu & Bin Xu & David P. Hamilton, 2019. "Variations in the Distribution of Chl- a and Simulation Using a Multiple Regression Model," IJERPH, MDPI, vol. 16(22), pages 1-16, November.
    14. Masuda, Yoshio & Yamanaka, Yasuhiro & Hirata, Takafumi & Nakano, Hideyuki & Kohyama, Takashi S., 2020. "Inhibition of competitive exclusion due to phytoplankton dispersion: a contribution for solving Hutchinson's paradox," Ecological Modelling, Elsevier, vol. 430(C).
    15. Nam Seon Kang & Kichul Cho & Sung Min An & Eun Song Kim & Hyunji Ki & Chung Hyeon Lee & Grace Choi & Ji Won Hong, 2022. "Taxonomic and Biochemical Characterization of Microalga Graesiella emersonii GEGS21 for Its Potential to Become Feedstock for Biofuels and Bioproducts," Energies, MDPI, vol. 15(22), pages 1-24, November.
    16. Chuanjun Dai & Hengguo Yu & Qing Guo & He Liu & Qi Wang & Zengling Ma & Min Zhao, 2019. "Dynamics Induced by Delay in a Nutrient-Phytoplankton Model with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    17. Ludovisi, Alessandro & Roselli, Leonilde & Basset, Alberto, 2012. "Testing the effectiveness of exergy-based tools on a seasonal succession in a coastal lagoon by using a size distribution approach," Ecological Modelling, Elsevier, vol. 245(C), pages 125-135.
    18. Beckmann, Aike & Hense, Inga, 2017. "The impact of primary and export production on the formation of the secondary nitrite maximum: A model study," Ecological Modelling, Elsevier, vol. 359(C), pages 25-33.
    19. Su, Bei & Pahlow, Markus & Prowe, A. E. Friederike, 2018. "The role of microzooplankton trophic interactions in modelling a suite of mesocosm ecosystems," Ecological Modelling, Elsevier, vol. 368(C), pages 169-179.
    20. Goebel, N.L. & Edwards, C.A. & Zehr, J.P. & Follows, M.J. & Morgan, S.G., 2013. "Modeled phytoplankton diversity and productivity in the California Current System," Ecological Modelling, Elsevier, vol. 264(C), pages 37-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:241-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.