IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v381y2018icp10-22.html
   My bibliography  Save this article

A length-based mark-recapture model for estimating abundance and recruitment: Removing bias due to size-selective capture gear

Author

Listed:
  • van Poorten, Brett T.
  • Taylor, Nathan
  • O’Brien, David
  • Walters, Carl J.

Abstract

We describe an unbiased length-based, age-structured mark-recapture (LAMR) model for estimating length-based abundance and recruitment of fish populations. Many mark-recapture studies employ capture gear that is size-selective, leading to a larger and faster growing marked sub-population with a different capture probability than the unmarked sub-population, resulting in a basic violation of assumptions for many mark-recapture models. Persistent differences in marked and unmarked individuals are estimated in our model using growth-type group accounting. Simulation-evaluation results indicate that the model produces largely unbiased estimates of recruitment and abundance across a range of sampling scenarios and population life-history types, and is robust to growth parameter misspecification. However, in older, slow growing populations, the model is prone to ‘smearing’ of recruitment estimates across early year-classes. The LAMR model is applied to data from multiple wild populations of rainbow trout to estimate recruitment and abundance. Overall, results indicate that the LAMR model addresses shortcomings associated with using size-selective gear in mark-recapture studies to produce reliable estimates of recruitment and size-based abundance.

Suggested Citation

  • van Poorten, Brett T. & Taylor, Nathan & O’Brien, David & Walters, Carl J., 2018. "A length-based mark-recapture model for estimating abundance and recruitment: Removing bias due to size-selective capture gear," Ecological Modelling, Elsevier, vol. 381(C), pages 10-22.
  • Handle: RePEc:eee:ecomod:v:381:y:2018:i:c:p:10-22
    DOI: 10.1016/j.ecolmodel.2018.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018301406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Besbeas & S. N. Freeman & B. J. T. Morgan & E. A. Catchpole, 2002. "Integrating Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters," Biometrics, The International Biometric Society, vol. 58(3), pages 540-547, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis, Emily B. & Kéry, Marc & Morgan, Byron J.T. & Coray, Armin & Schaub, Michael & Baur, Bruno, 2021. "Integrated modelling of insect population dynamics at two temporal scales," Ecological Modelling, Elsevier, vol. 441(C).
    2. Gurutzeta Guillera-Arroita & José J. Lahoz-Monfort, 2017. "Species occupancy estimation and imperfect detection: shall surveys continue after the first detection?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 381-398, October.
    3. Zhang, Hongmei & Ghosh, Kaushik & Ghosh, Pulak, 2012. "Sampling designs via a multivariate hypergeometric-Dirichlet process model for a multi-species assemblage with unknown heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2562-2573.
    4. Nichols, J.M. & Spendelow, J.A. & Nichols, J.D., 2017. "Using Optimal Transport Theory to Estimate Transition Probabilities in Metapopulation Dynamics," Ecological Modelling, Elsevier, vol. 359(C), pages 311-319.
    5. Leo Polansky & Ken B. Newman & Lara Mitchell, 2021. "Improving inference for nonlinear state‐space models of animal population dynamics given biased sequential life stage data," Biometrics, The International Biometric Society, vol. 77(1), pages 352-361, March.
    6. Blanca Sarzo & Ruth King & David Conesa & Jonas Hentati-Sundberg, 2021. "Correcting Bias in Survival Probabilities for Partially Monitored Populations via Integrated Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 200-219, June.
    7. Chiara Mazzetta & Steve Brooks & Stephen N. Freeman, 2007. "On Smoothing Trends in Population Index Modeling," Biometrics, The International Biometric Society, vol. 63(4), pages 1007-1014, December.
    8. Abadi, Fitsum & Gimenez, Olivier & Jakober, Hans & Stauber, Wolfgang & Arlettaz, Raphaël & Schaub, Michael, 2012. "Estimating the strength of density dependence in the presence of observation errors using integrated population models," Ecological Modelling, Elsevier, vol. 242(C), pages 1-9.
    9. José J. Lahoz-Monfort & Michael P. Harris & Sarah Wanless & Stephen N. Freeman & Byron J. T. Morgan, 2017. "Bringing It All Together: Multi-species Integrated Population Modelling of a Breeding Community," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 140-160, June.
    10. Simone Tenan & Paolo Pedrini & Natalia Bragalanti & Claudio Groff & Chris Sutherland, 2017. "Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-18, October.
    11. Soumen Dey & Mohan Delampady & Ravishankar Parameshwaran & N. Samba Kumar & Arjun Srivathsa & K. Ullas Karanth, 2017. "Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 111-139, June.
    12. Mosnier, A. & Doniol-Valcroze, T. & Gosselin, J.-F. & Lesage, V. & Measures, L.N. & Hammill, M.O., 2015. "Insights into processes of population decline using an integrated population model: The case of the St. Lawrence Estuary beluga (Delphinapterus leucas)," Ecological Modelling, Elsevier, vol. 314(C), pages 15-31.
    13. Ming Zhou & Rachel S. McCrea & Eleni Matechou & Diana J. Cole & Richard A. Griffiths, 2019. "Removal models accounting for temporary emigration," Biometrics, The International Biometric Society, vol. 75(1), pages 24-35, March.
    14. Gimenez, Olivier & Rossi, Vivien & Choquet, Rémi & Dehais, Camille & Doris, Blaise & Varella, Hubert & Vila, Jean-Pierre & Pradel, Roger, 2007. "State-space modelling of data on marked individuals," Ecological Modelling, Elsevier, vol. 206(3), pages 431-438.
    15. Barraquand, Frédéric & Gimenez, Olivier, 2019. "Integrating multiple data sources to fit matrix population models for interacting species," Ecological Modelling, Elsevier, vol. 411(C).
    16. R. B. O'Hara & S. Lampila & M. Orell, 2009. "Estimation of Rates of Births, Deaths, and Immigration from Mark–Recapture Data," Biometrics, The International Biometric Society, vol. 65(1), pages 275-281, March.
    17. Sinnott, Emily A. & Thompson, Frank R. & Weegman, Mitch D. & Thompson, Thomas R. & Mosloff, Alisha R. & Hedges, R. Kyle & Loncarich, Frank L., 2023. "Evaluation of seasonal site-level demography and management for northern bobwhite using integrated population models," Ecological Modelling, Elsevier, vol. 475(C).
    18. Devin S. Johnson & Brian M. Brost & Mevin B. Hooten, 2022. "Greater Than the Sum of its Parts: Computationally Flexible Bayesian Hierarchical Modeling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 382-400, June.
    19. N. O. A. S. Jourdain & D. J. Cole & M. S. Ridout & J. Marcus Rowcliffe, 2020. "Statistical Development of Animal Density Estimation Using Random Encounter Modelling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 148-167, June.
    20. Barraquand, Frédéric & Gimenez, Olivier, 2021. "Fitting stochastic predator–prey models using both population density and kill rate data," Theoretical Population Biology, Elsevier, vol. 138(C), pages 1-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:381:y:2018:i:c:p:10-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.