IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v362y2017icp1-12.html
   My bibliography  Save this article

Modelling for management: Coral photo-physiology and growth potential under varying turbidity regimes

Author

Listed:
  • Larsen, Trine C.
  • Browne, Nicola K.
  • Erichsen, Anders C.
  • Tun, Karenne
  • Todd, Peter A.

Abstract

Suspended and deposited sediments can negatively impact coral health by reducing light penetration and smothering coral tissue. As coral sediment thresholds vary among species and between locations, setting sediment thresholds for the management of activities that increase sediment loads continues to be a challenging goal. Static threshold values used to date do not take into account temporal and spatial variations in a coral’s ability to acclimate to high sediment loads leading to either management approaches that are overly conservative or do not protect corals. This study presents a numerical model that quantifies the relationship between coral photosynthesis and growth potential under varying turbidity-driven light regimes. The model accounts for coral acclimation potential as well as a dynamic energy transfer between host and symbiont using field data collected from nearshore reefs in Singapore combined with both established and novel mathematical relationships. The model yielded photosynthetic and respiratory outputs that were comparable to in situ data collected, illustrating the predictive capability of modelling coral growth potential to declines in light driven by suspended sediments. The inclusion of more than one coral species into the model allows for variations in responses to sediments among different coral morphologies and taxa, and will strengthen the predictive capacity for management of sediment related events. As demonstrated here, the model can be used to identify least risk scenarios for dredging operations as a means of both conserving coral reefs as well as ensuring cost-effective management practices.

Suggested Citation

  • Larsen, Trine C. & Browne, Nicola K. & Erichsen, Anders C. & Tun, Karenne & Todd, Peter A., 2017. "Modelling for management: Coral photo-physiology and growth potential under varying turbidity regimes," Ecological Modelling, Elsevier, vol. 362(C), pages 1-12.
  • Handle: RePEc:eee:ecomod:v:362:y:2017:i:c:p:1-12
    DOI: 10.1016/j.ecolmodel.2017.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016306378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moberg, Fredrik & Folke, Carl, 1999. "Ecological goods and services of coral reef ecosystems," Ecological Economics, Elsevier, vol. 29(2), pages 215-233, May.
    2. Peter J. Mumby & Alan Hastings & Helen J. Edwards, 2007. "Thresholds and the resilience of Caribbean coral reefs," Nature, Nature, vol. 450(7166), pages 98-101, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renken, Henk & Mumby, Peter J., 2009. "Modelling the dynamics of coral reef macroalgae using a Bayesian belief network approach," Ecological Modelling, Elsevier, vol. 220(9), pages 1305-1314.
    2. Miñarro, Sara & Leins, Johannes & Acevedo-Trejos, Esteban & Fulton, Elizabeth A. & Reuter, Hauke, 2018. "SEAMANCORE: A spatially explicit simulation model for assisting the local MANagement of COral REefs," Ecological Modelling, Elsevier, vol. 384(C), pages 296-307.
    3. Holmes, G. & Johnstone, R.W., 2010. "Modelling coral reef ecosystems with limited observational data," Ecological Modelling, Elsevier, vol. 221(8), pages 1173-1183.
    4. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    5. Natalia Uribe-Castañeda & Alice Newton & Martin Le Tissier, 2018. "Coral Reef Socio-Ecological Systems Analysis & Restoration," Sustainability, MDPI, vol. 10(12), pages 1-11, November.
    6. Rocío del Pilar Moreno-Sánchez & Jorge H. Maldonado & Camilo Andrés Gutiérrez & Melissa Rubio, 2013. "Valoración de Áreas Marinas Protegidas desde la perspectiva de los usuarios de recursos: conciliando enfoques cuantitativos individuales con enfoques cualitativos colectivos," Documentos CEDE 11936, Universidad de los Andes, Facultad de Economía, CEDE.
    7. Jorge H. Maldonado & Rocío del Pilar Moreno-Sánchez & Tatiana G. Zárate & Camila Andrea Barrera, 2013. "Valoración económica del subsistema de Áreas Marinas Protegidas en Colombia: un análisis para formuladores de política desde un enfoque multi-servicios y multi-agentes," Documentos CEDE 11933, Universidad de los Andes, Facultad de Economía, CEDE.
    8. Phillip K Lowe & John F Bruno & Elizabeth R Selig & Matthew Spencer, 2011. "Empirical Models of Transitions between Coral Reef States: Effects of Region, Protection, and Environmental Change," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-15, November.
    9. González-Rivero, Manuel & Yakob, Laith & Mumby, Peter J., 2011. "The role of sponge competition on coral reef alternative steady states," Ecological Modelling, Elsevier, vol. 222(11), pages 1847-1853.
    10. Ngoc, Quach Thi Khanh, 2019. "Assessing the value of coral reefs in the face of climate change: The evidence from Nha Trang Bay, Vietnam," Ecosystem Services, Elsevier, vol. 35(C), pages 99-108.
    11. Sheila M W Reddy & Theodore Groves & Sriniketh Nagavarapu, 2014. "Consequences of a Government-Controlled Agricultural Price Increase on Fishing and the Coral Reef Ecosystem in the Republic of Kiribati," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-11, May.
    12. McVittie, Alistair & Moran, Dominic, 2010. "Valuing the non-use benefits of marine conservation zones: An application to the UK Marine Bill," Ecological Economics, Elsevier, vol. 70(2), pages 413-424, December.
    13. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    14. Rao, Nalini S. & Ghermandi, Andrea & Portela, Rosimeiry & Wang, Xuanwen, 2015. "Global values of coastal ecosystem services: A spatial economic analysis of shoreline protection values," Ecosystem Services, Elsevier, vol. 11(C), pages 95-105.
    15. Alemu I, Jahson Berhane & Schuhmann, Peter & Agard, John, 2019. "Mixed preferences for lionfish encounters on reefs in Tobago: Results from a choice experiment," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    16. Javier Cuetos-Bueno & Dalia Hernandez-Ortiz & Curtis Graham & Peter Houk, 2018. "Human and environmental gradients predict catch, effort, and species composition in a large Micronesian coral-reef fishery," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-18, May.
    17. Shalini Singh & Jahangeer A. Bhat & Shipra Shah & Nazir A. Pala, 2021. "Coastal resource management and tourism development in Fiji Islands: a conservation challenge," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3009-3027, March.
    18. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    19. George Parsons & Steven Thur, 2008. "Valuing Changes in the Quality of Coral Reef Ecosystems: A Stated Preference Study of SCUBA Diving in the Bonaire National Marine Park," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(4), pages 593-608, August.
    20. Clancy, Damian & Tanner, Jason E. & McWilliam, Stephen & Spencer, Matthew, 2010. "Quantifying parameter uncertainty in a coral reef model using Metropolis-Coupled Markov Chain Monte Carlo," Ecological Modelling, Elsevier, vol. 221(10), pages 1337-1347.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:362:y:2017:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.