IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v352y2017icp90-107.html
   My bibliography  Save this article

Model sensitivity to spatial resolution and explicit light representation for simulation of boreal forests in complex terrain

Author

Listed:
  • Brazhnik, Ksenia
  • Shugart, H.H.

Abstract

A model is a simplification of our understanding of reality, but how much simplification is too much? We assessed model sensitivity for a new spatially-explicit individual-based gap model (IBM) SIBBORK to determine how spatial resolution (i.e., plot size) and explicit representation of light and space affect the simulated vegetation characteristics (e.g., structure and composition). The 3-dimensional (3-D) representation of light is the most computationally-expensive part of the simulation, so it is worthwhile to evaluate whether the time, resource and effort of spatial explicity improve predictive capabilities. In the simulation, gap dynamics occur at the plot-level, wherein a certain level of spatial homogeneity is assumed. Therefore, for the simulation of each ecosystem it is imperative to select the appropriate scale at which gap dynamics are simulated, i.e. the plot size. We conducted these sensitivity analyses and qualitatively compared model output to the descriptions of forest structure and composition at two different sites in central and southern Siberia. We systematically varied the plot size (100–900m2) and found that a 100m2 plot is most appropriate for the simulation of the central Siberian boreal forest ecosystem. Moreover, we found that the forest structure and composition simulated under the light environment generated using a 3-dimensional light ray tracing subroutine more closely resembled local and regional forest characteristics at both sites, whereas the growth and stand processes computed based on the simplified (1-D) light conditions approximated only large-scale (continental) average forest structure and biomass for the Eurasian boreal forest.

Suggested Citation

  • Brazhnik, Ksenia & Shugart, H.H., 2017. "Model sensitivity to spatial resolution and explicit light representation for simulation of boreal forests in complex terrain," Ecological Modelling, Elsevier, vol. 352(C), pages 90-107.
  • Handle: RePEc:eee:ecomod:v:352:y:2017:i:c:p:90-107
    DOI: 10.1016/j.ecolmodel.2017.02.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016305233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.02.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larocque, Guy R. & Archambault, Louis & Delisle, Claude, 2011. "Development of the gap model ZELIG-CFS to predict the dynamics of North American mixed forest types with complex structures," Ecological Modelling, Elsevier, vol. 222(14), pages 2570-2583.
    2. Brazhnik, Ksenia & Shugart, H.H., 2016. "SIBBORK: A new spatially-explicit gap model for boreal forest," Ecological Modelling, Elsevier, vol. 320(C), pages 182-196.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2018. "Resilience of Complex Systems: State of the Art and Directions for Future Research," Complexity, Hindawi, vol. 2018, pages 1-44, August.
    2. Brazhnik, Ksenia & Shugart, H.H., 2016. "SIBBORK: A new spatially-explicit gap model for boreal forest," Ecological Modelling, Elsevier, vol. 320(C), pages 182-196.
    3. Millington, James D.A. & Walters, Michael B. & Matonis, Megan S. & Liu, Jianguo, 2013. "Filling the gap: A compositional gap regeneration model for managed northern hardwood forests," Ecological Modelling, Elsevier, vol. 253(C), pages 17-27.
    4. Zhang, Tao & Lichstein, Jeremy W. & Birdsey, Richard A., 2014. "Spatial and temporal heterogeneity in the dynamics of eastern U.S. forests: Implications for developing broad-scale forest dynamics models," Ecological Modelling, Elsevier, vol. 279(C), pages 89-99.
    5. Millington, James D.A. & Walters, Michael B. & Matonis, Megan S. & Liu, Jianguo, 2013. "Modelling for forest management synergies and trade-offs: Northern hardwood tree regeneration, timber and deer," Ecological Modelling, Elsevier, vol. 248(C), pages 103-112.
    6. Larocque, Guy R. & Bhatti, Jagtar & Arsenault, André, 2014. "Integrated modelling software platform development for effective use of ecosystem models," Ecological Modelling, Elsevier, vol. 288(C), pages 195-202.
    7. Kruse, Stefan & Wieczorek, Mareike & Jeltsch, Florian & Herzschuh, Ulrike, 2016. "Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix," Ecological Modelling, Elsevier, vol. 338(C), pages 101-121.
    8. Nakagawa, Yoshiaki & Yokozawa, Masayuki & Ito, Akihiko & Hara, Toshihiko, 2017. "Effectively tuning plant growth models with different spatial complexity: A statistical perspective," Ecological Modelling, Elsevier, vol. 361(C), pages 95-112.
    9. Holm, Jennifer A. & Shugart, H.H. & Van Bloem, S.J. & Larocque, G.R., 2012. "Gap model development, validation, and application to succession of secondary subtropical dry forests of Puerto Rico," Ecological Modelling, Elsevier, vol. 233(C), pages 70-82.
    10. Larocque, Guy R. & Bhatti, Jagtar & Arsenault, André, 2015. "Integrated modelling software platform development for effective use of ecosystem models," Ecological Modelling, Elsevier, vol. 306(C), pages 318-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:352:y:2017:i:c:p:90-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.