IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v313y2015icp29-40.html
   My bibliography  Save this article

Incorporating food-web parameter uncertainty into Ecopath-derived ecological network indicators

Author

Listed:
  • Guesnet, Vanessa
  • Lassalle, Géraldine
  • Chaalali, Aurélie
  • Kearney, Kelly
  • Saint-Béat, Blanche
  • Karimi, Battle
  • Grami, Boutheina
  • Tecchio, Samuele
  • Niquil, Nathalie
  • Lobry, Jérémy

Abstract

Ecological network analysis (ENA) provides numerous ecosystem level indices offering a valuable approach to compare and categorize the ecological structure and function of ecosystems. The inclusion of ENA methods in Ecopath with Ecosim (EwE) has insured their continued contribution to ecosystem-based management. In EwE, ENA-derived ecological conclusions are currently based on single values of ENA indices calculated from a unique input flow matrix. Here, we document an easy-to-use routine that allows EwE users to incorporate uncertainty in EwE input data into the calculation of ENA indices. This routine, named ENAtool, is a suite of Matlab functions that performs three main steps: (1) import of an existing Ecopath model and its associated parameter uncertainty values in the form of uncertainty intervals into Matlab; (2) generation of an ensemble of Ecopath models with the same structure as the original, and with parameter values varying based on the prescribed uncertainty limits; and (3) calculation of a set of 13 ENA indices for each ensemble member (one set of flow values) and of summary statistics across the whole ensemble. This novel routine offers the opportunity to calculate ENA indices ranges and confidence intervals, and thus to perform quantitative data analyses. An application of ENAtool on a pre-existing Ecopath model of the Bay of Biscay continental shelf is presented, with a focus on the robustness of previously published ENA-based ecological traits of this ecosystem when the newly introduced uncertainty values are added. We also describe the sensitivity of the ENAtool results to both the number of ensemble members used and to the uncertainty interval set around each input parameter. Ecological conclusions derived from EwE, particularly those regarding the comparison of structural and functional elements for a range of ecosystem types or the assessment of ecosystem properties along gradients of environmental conditions or anthropogenic disturbances, will gain in statistical interpretability.

Suggested Citation

  • Guesnet, Vanessa & Lassalle, Géraldine & Chaalali, Aurélie & Kearney, Kelly & Saint-Béat, Blanche & Karimi, Battle & Grami, Boutheina & Tecchio, Samuele & Niquil, Nathalie & Lobry, Jérémy, 2015. "Incorporating food-web parameter uncertainty into Ecopath-derived ecological network indicators," Ecological Modelling, Elsevier, vol. 313(C), pages 29-40.
  • Handle: RePEc:eee:ecomod:v:313:y:2015:i:c:p:29-40
    DOI: 10.1016/j.ecolmodel.2015.05.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015002495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.05.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kearney, Kelly A. & Stock, Charles & Aydin, Kerim & Sarmiento, Jorge L., 2012. "Coupling planktonic ecosystem and fisheries food web models for a pelagic ecosystem: Description and validation for the subarctic Pacific," Ecological Modelling, Elsevier, vol. 237, pages 43-62.
    2. Baeta, Alexandra & Niquil, Nathalie & Marques, João C. & Patrício, Joana, 2011. "Modelling the effects of eutrophication, mitigation measures and an extreme flood event on estuarine benthic food webs," Ecological Modelling, Elsevier, vol. 222(6), pages 1209-1221.
    3. Johnson, Galen A. & Niquil, Nathalie & Asmus, Harald & Bacher, Cédric & Asmus, Ragnhild & Baird, Daniel, 2009. "The effects of aggregation on the performance of the inverse method and indicators of network analysis," Ecological Modelling, Elsevier, vol. 220(23), pages 3448-3464.
    4. Kones, Julius K. & Soetaert, Karline & van Oevelen, Dick & Owino, John O., 2009. "Are network indices robust indicators of food web functioning? A Monte Carlo approach," Ecological Modelling, Elsevier, vol. 220(3), pages 370-382.
    5. Lassalle, Géraldine & Bourdaud, Pierre & Saint-Béat, Blanche & Rochette, Sébastien & Niquil, Nathalie, 2014. "A toolbox to evaluate data reliability for whole-ecosystem models: Application on the Bay of Biscay continental shelf food-web model," Ecological Modelling, Elsevier, vol. 285(C), pages 13-21.
    6. Maciej T Tomczak & Johanna J Heymans & Johanna Yletyinen & Susa Niiranen & Saskia A Otto & Thorsten Blenckner, 2013. "Ecological Network Indicators of Ecosystem Status and Change in the Baltic Sea," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van der Heijden, L.H. & Niquil, N. & Haraldsson, M. & Asmus, R.M. & Pacella, S.R. & Graeve, M. & Rzeznik-Orignac, J. & Asmus, H. & Saint-Béat, B. & Lebreton, B., 2020. "Quantitative food web modeling unravels the importance of the microphytobenthos-meiofauna pathway for a high trophic transfer by meiofauna in soft-bottom intertidal food webs," Ecological Modelling, Elsevier, vol. 430(C).
    2. Heymans, Johanna Jacomina & Coll, Marta & Link, Jason S. & Mackinson, Steven & Steenbeek, Jeroen & Walters, Carl & Christensen, Villy, 2016. "Best practice in Ecopath with Ecosim food-web models for ecosystem-based management," Ecological Modelling, Elsevier, vol. 331(C), pages 173-184.
    3. Han, Dongyan & Chen, Yong & Zhang, Chongliang & Ren, Yiping & Xue, Ying & Wan, Rong, 2017. "Evaluating impacts of intensive shellfish aquaculture on a semi-closed marine ecosystem," Ecological Modelling, Elsevier, vol. 359(C), pages 193-200.
    4. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    5. Mao, Xufeng & Wei, Xiaoyan & Yuan, Donghai & Jin, Yanxiang & Jin, Xin, 2018. "An ecological-network-analysis based perspective on the biological control of algal blooms in Ulansuhai Lake, China," Ecological Modelling, Elsevier, vol. 386(C), pages 11-19.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pacella, Stephen R. & Lebreton, Benoit & Richard, Pierre & Phillips, Donald & DeWitt, Theodore H. & Niquil, Nathalie, 2013. "Incorporation of diet information derived from Bayesian stable isotope mixing models into mass-balanced marine ecosystem models: A case study from the Marennes-Oléron Estuary, France," Ecological Modelling, Elsevier, vol. 267(C), pages 127-137.
    2. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    3. Heymans, Johanna Jacomina & Coll, Marta & Link, Jason S. & Mackinson, Steven & Steenbeek, Jeroen & Walters, Carl & Christensen, Villy, 2016. "Best practice in Ecopath with Ecosim food-web models for ecosystem-based management," Ecological Modelling, Elsevier, vol. 331(C), pages 173-184.
    4. Saint-Béat, B. & Vézina, A.F. & Asmus, R. & Asmus, H. & Niquil, N., 2013. "The mean function provides robustness to linear inverse modelling flow estimation in food webs: A comparison of functions derived from statistics and ecological theories," Ecological Modelling, Elsevier, vol. 258(C), pages 53-64.
    5. Brunnermeier, M. & Clerc, L. & Scheicher, M., 2013. "Assessing contagion risks in the CDS market," Financial Stability Review, Banque de France, issue 17, pages 123-134, April.
    6. Brigolin, D. & Savenkoff, C. & Zucchetta, M. & Pranovi, F. & Franzoi, P. & Torricelli, P. & Pastres, R., 2011. "An inverse model for the analysis of the Venice lagoon food web," Ecological Modelling, Elsevier, vol. 222(14), pages 2404-2413.
    7. Taffi, Marianna & Paoletti, Nicola & Liò, Pietro & Pucciarelli, Sandra & Marini, Mauro, 2015. "Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: The case study of PCBs in the Adriatic Sea," Ecological Modelling, Elsevier, vol. 306(C), pages 205-215.
    8. Wang, Chao & Sun, Qiyuan & Wang, Peifang & Hou, Jun & Qu, Aiyu, 2013. "An optimization approach to runoff regulation for potential estuarine eutrophication control: Model development and a case study of Yangtze Estuary, China," Ecological Modelling, Elsevier, vol. 251(C), pages 199-210.
    9. Heymans, Johanna J. & Tomczak, Maciej T., 2016. "Regime shifts in the Northern Benguela ecosystem: Challenges for management," Ecological Modelling, Elsevier, vol. 331(C), pages 151-159.
    10. Han, Jeong-Ho & Kumar, Hema K. & Lee, Jae Hoon & Zhang, Chang-Ik & Kim, Se-Wha & Lee, Jung-Ho & Kim, Sang Don & An, Kwang-Guk, 2011. "Integrative trophic network assessments of a lentic ecosystem by key ecological approaches of water chemistry, trophic guilds, and ecosystem health assessments along with an ECOPATH model," Ecological Modelling, Elsevier, vol. 222(19), pages 3457-3472.
    11. Caracappa, Joseph C. & Beet, Andrew & Gaichas, Sarah & Gamble, Robert J. & Hyde, Kimberly J.W. & Large, Scott I. & Morse, Ryan E. & Stock, Charles A. & Saba, Vincent S., 2022. "A northeast United States Atlantis marine ecosystem model with ocean reanalysis and ocean color forcing," Ecological Modelling, Elsevier, vol. 471(C).
    12. Colléter, Mathieu & Valls, Audrey & Guitton, Jérôme & Gascuel, Didier & Pauly, Daniel & Christensen, Villy, 2015. "Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository," Ecological Modelling, Elsevier, vol. 302(C), pages 42-53.
    13. van der Heijden, L.H. & Niquil, N. & Haraldsson, M. & Asmus, R.M. & Pacella, S.R. & Graeve, M. & Rzeznik-Orignac, J. & Asmus, H. & Saint-Béat, B. & Lebreton, B., 2020. "Quantitative food web modeling unravels the importance of the microphytobenthos-meiofauna pathway for a high trophic transfer by meiofauna in soft-bottom intertidal food webs," Ecological Modelling, Elsevier, vol. 430(C).
    14. Borrett, Stuart R. & Moody, James & Edelmann, Achim, 2014. "The rise of Network Ecology: Maps of the topic diversity and scientific collaboration," Ecological Modelling, Elsevier, vol. 293(C), pages 111-127.
    15. David A Carozza & Daniele Bianchi & Eric D Galbraith, 2017. "Formulation, General Features and Global Calibration of a Bioenergetically-Constrained Fishery Model," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-28, January.
    16. Salas, Andria K. & Borrett, Stuart R., 2011. "Evidence for the dominance of indirect effects in 50 trophic ecosystem networks," Ecological Modelling, Elsevier, vol. 222(5), pages 1192-1204.
    17. Nogues, Quentin & Baulaz, Yoann & Clavel, Joanne & Araignous, Emma & Bourdaud, Pierre & Ben Rais Lasram, Frida & Dauvin, Jean-Claude & Girardin, Valérie & Halouani, Ghassen & Le Loc'h, François & Lo, 2023. "The usefulness of food web models in the ecosystem services framework: Quantifying, mapping, and linking services supply," Ecosystem Services, Elsevier, vol. 63(C).
    18. Schaubroeck, Thomas & Staelens, Jeroen & Verheyen, Kris & Muys, Bart & Dewulf, Jo, 2012. "Improved ecological network analysis for environmental sustainability assessment; a case study on a forest ecosystem," Ecological Modelling, Elsevier, vol. 247(C), pages 144-156.
    19. Hyder, Kieran & Rossberg, Axel G. & Allen, J. Icarus & Austen, Melanie C. & Barciela, Rosa M. & Bannister, Hayley J. & Blackwell, Paul G. & Blanchard, Julia L. & Burrows, Michael T. & Defriez, Emma & , 2015. "Making modelling count - increasing the contribution of shelf-seas community and ecosystem models to policy development and management," Marine Policy, Elsevier, vol. 61(C), pages 291-302.
    20. Chaalali, Aurélie & Beaugrand, Grégory & Raybaud, Virginie & Lassalle, Géraldine & Saint-Béat, Blanche & Le Loc’h, François & Bopp, Laurent & Tecchio, Samuele & Safi, Georges & Chifflet, Marina & Lobr, 2016. "From species distributions to ecosystem structure and function: A methodological perspective," Ecological Modelling, Elsevier, vol. 334(C), pages 78-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:313:y:2015:i:c:p:29-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.