IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v273y2014icp44-54.html
   My bibliography  Save this article

The effect of adjusting model inputs to achieve mass balance on time-dynamic simulations in a food-web model of Lake Huron

Author

Listed:
  • Langseth, Brian J.
  • Jones, Michael L.
  • Riley, Stephen C.

Abstract

Ecopath with Ecosim (EwE) is a widely used modeling tool in fishery research and management. Ecopath requires a mass-balanced snapshot of a food web at a particular point in time, which Ecosim then uses to simulate changes in biomass over time. Initial inputs to Ecopath, including estimates for biomasses, production to biomass ratios, consumption to biomass ratios, and diets, rarely produce mass balance, and thus ad hoc changes to inputs are required to balance the model. There has been little previous research of whether ad hoc changes to achieve mass balance affect Ecosim simulations. We constructed an EwE model for the offshore community of Lake Huron, and balanced the model using four contrasting but realistic methods. The four balancing methods were based on two contrasting approaches; in the first approach, production of unbalanced groups was increased by increasing either biomass or the production to biomass ratio, while in the second approach, consumption of predators on unbalanced groups was decreased by decreasing either biomass or the consumption to biomass ratio. We compared six simulation scenarios based on three alternative assumptions about the extent to which mortality rates of prey can change in response to changes in predator biomass (i.e., vulnerabilities) under perturbations to either fishing mortality or environmental production. Changes in simulated biomass values over time were used in a principal components analysis to assess the comparative effect of balancing method, vulnerabilities, and perturbation types. Vulnerabilities explained the most variation in biomass, followed by the type of perturbation. Choice of balancing method explained little of the overall variation in biomass. Under scenarios where changes in predator biomass caused large changes in mortality rates of prey (i.e., high vulnerabilities), variation in biomass was greater than when changes in predator biomass caused only small changes in mortality rates of prey (i.e., low vulnerabilities), and was amplified when environmental production was increased. When standardized to mean changes in biomass within each scenario, scenarios when vulnerabilities were low and when fishing mortality was increased explained the most variation in biomass. Our findings suggested that approaches to balancing Ecopath models have relatively little effect on changes in biomass over time, especially when compared to assumptions about how mortality rates of prey change in response to changes in predator biomass. We concluded that when constructing food-web models using EwE, determining the effect of changes in predator biomass on mortality rates of prey should be prioritized over determining the best way to balance the model.

Suggested Citation

  • Langseth, Brian J. & Jones, Michael L. & Riley, Stephen C., 2014. "The effect of adjusting model inputs to achieve mass balance on time-dynamic simulations in a food-web model of Lake Huron," Ecological Modelling, Elsevier, vol. 273(C), pages 44-54.
  • Handle: RePEc:eee:ecomod:v:273:y:2014:i:c:p:44-54
    DOI: 10.1016/j.ecolmodel.2013.10.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013005267
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.10.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Langseth, Brian J. & Rogers, Mark & Zhang, Hongyan, 2012. "Modeling species invasions in Ecopath with Ecosim: An evaluation using Laurentian Great Lakes models," Ecological Modelling, Elsevier, vol. 247(C), pages 251-261.
    2. Stewart, Thomas. J. & Sprules, W. Gary, 2011. "Carbon-based balanced trophic structure and flows in the offshore Lake Ontario food web before (1987–1991) and after (2001–2005) invasion-induced ecosystem change," Ecological Modelling, Elsevier, vol. 222(3), pages 692-708.
    3. Walters, Carl & Christensen, Villy, 2007. "Adding realism to foraging arena predictions of trophic flow rates in Ecosim ecosystem models: Shared foraging arenas and bout feeding," Ecological Modelling, Elsevier, vol. 209(2), pages 342-350.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alva-Basurto, Jorge Christian & Arias-González, Jesús Ernesto, 2014. "Modelling the effects of climate change on a Caribbean coral reef food web," Ecological Modelling, Elsevier, vol. 289(C), pages 1-14.
    2. Colvin, Michael E. & Pierce, Clay L. & Stewart, Timothy W., 2015. "A food web modeling analysis of a Midwestern, USA eutrophic lake dominated by non-native Common Carp and Zebra Mussels," Ecological Modelling, Elsevier, vol. 312(C), pages 26-40.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Langseth, Brian J. & Rogers, Mark & Zhang, Hongyan, 2012. "Modeling species invasions in Ecopath with Ecosim: An evaluation using Laurentian Great Lakes models," Ecological Modelling, Elsevier, vol. 247(C), pages 251-261.
    2. Jia, Peiqiao & Hu, Menghong & Hu, Zhongjun & Liu, Qigen & Wu, Zhen, 2012. "Modeling trophic structure and energy flows in a typical macrophyte dominated shallow lake using the mass balanced model," Ecological Modelling, Elsevier, vol. 233(C), pages 26-30.
    3. Ricci, P. & Serpetti, N. & Cascione, D. & Cipriano, G. & D'Onghia, G. & De Padova, D. & Fanizza, C. & Ingrosso, M. & Carlucci, R., 2023. "Investigating fishery and climate change effects on the conservation status of odontocetes in the Northern Ionian Sea (Central Mediterranean Sea)," Ecological Modelling, Elsevier, vol. 485(C).
    4. Bacalso, Regina Therese M. & Wolff, Matthias & Rosales, Rina Maria & Armada, Nygiel B., 2016. "Effort reallocation of illegal fishing operations: A profitable scenario for the municipal fisheries of Danajon Bank, Central Philippines," Ecological Modelling, Elsevier, vol. 331(C), pages 5-16.
    5. Bentley, Jacob W. & Serpetti, Natalia & Heymans, Johanna Jacomina, 2017. "Investigating the potential impacts of ocean warming on the Norwegian and Barents Seas ecosystem using a time-dynamic food-web model," Ecological Modelling, Elsevier, vol. 360(C), pages 94-107.
    6. Angelini, Ronaldo & de Morais, Ronny José & Catella, Agostinho Carlos & Resende, Emiko Kawakami & Libralato, Simone, 2013. "Aquatic food webs of the oxbow lakes in the Pantanal: A new site for fisheries guaranteed by alternated control?," Ecological Modelling, Elsevier, vol. 253(C), pages 82-96.
    7. Colléter, Mathieu & Valls, Audrey & Guitton, Jérôme & Gascuel, Didier & Pauly, Daniel & Christensen, Villy, 2015. "Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository," Ecological Modelling, Elsevier, vol. 302(C), pages 42-53.
    8. Apriesnig, Jenny L. & Warziniack, Travis W. & Finnoff, David C. & Zhang, Hongyan & Lee, Katherine D. & Mason, Doran M. & Rutherford, Edward S., 2022. "The consequences of misrepresenting feedbacks in coupled human and environmental models," Ecological Economics, Elsevier, vol. 195(C).
    9. Libralato, Simone & Solidoro, Cosimo, 2009. "Bridging biogeochemical and food web models for an End-to-End representation of marine ecosystem dynamics: The Venice lagoon case study," Ecological Modelling, Elsevier, vol. 220(21), pages 2960-2971.
    10. Walters, Carl & Christensen, Villy, 2019. "Effect of non-additivity in mortality rates on predictions of potential yield of forage fishes," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    11. Overholtz, William & Link, Jason, 2009. "A simulation model to explore the response of the Gulf of Maine food web to large-scale environmental and ecological changes," Ecological Modelling, Elsevier, vol. 220(19), pages 2491-2502.
    12. Sadchatheeswaran, Saachi & Branch, George M & Shannon, Lynne J & Moloney, Coleen L & Coll, Marta & Robinson, Tamara B, 2020. "Modelling changes in trophic and structural impacts of alien ecosystem engineers on a rocky-shore island," Ecological Modelling, Elsevier, vol. 433(C).
    13. Wilen, Christopher D. & Wilen, James E., 2012. "Fishing down the food chain revisited: Modeling exploited trophic systems," Ecological Economics, Elsevier, vol. 79(C), pages 80-88.
    14. Kumar, Rajeev & Varkey, Divya & Pitcher, Tony, 2016. "Simulation of zebra mussels (Dreissena polymorpha) invasion and evaluation of impacts on Mille Lacs Lake, Minnesota: An ecosystem model," Ecological Modelling, Elsevier, vol. 331(C), pages 68-76.
    15. Heinichen, Margaret & McManus, M. Conor & Lucey, Sean M. & Aydin, Kerim & Humphries, Austin & Innes-Gold, Anne & Collie, Jeremy, 2022. "Incorporating temperature-dependent fish bioenergetics into a Narragansett Bay food web model," Ecological Modelling, Elsevier, vol. 466(C).
    16. Sadchatheeswaran, Saachi & Branch, George M. & Shannon, Lynne J. & Coll, Marta & Steenbeek, Jeroen, 2021. "A novel approach to explicitly model the spatiotemporal impacts of structural complexity created by alien ecosystem engineers in a marine benthic environment," Ecological Modelling, Elsevier, vol. 459(C).
    17. Stäbler, Moritz & Kempf, Alexander & Mackinson, Steven & Poos, Jan Jaap & Garcia, Clement & Temming, Axel, 2016. "Combining efforts to make maximum sustainable yields and good environmental status match in a food-web model of the southern North Sea," Ecological Modelling, Elsevier, vol. 331(C), pages 17-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:273:y:2014:i:c:p:44-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.