Testing the effectiveness of exergy-based tools on a seasonal succession in a coastal lagoon by using a size distribution approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ecolmodel.2012.02.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jørgensen, Sven Erik & Ludovisi, Alessandro & Nielsen, Søren Nors, 2010. "The free energy and information embodied in the amino acid chains of organisms," Ecological Modelling, Elsevier, vol. 221(19), pages 2388-2392.
- Ludovisi, Alessandro & Jørgensen, Sven Erik, 2009. "Comparison of exergy found by a classical thermodynamic approach and by the use of the information stored in the genome," Ecological Modelling, Elsevier, vol. 220(16), pages 1897-1903.
- Xabier Irigoien & Jef Huisman & Roger P. Harris, 2004. "Global biodiversity patterns of marine phytoplankton and zooplankton," Nature, Nature, vol. 429(6994), pages 863-867, June.
- Ludovisi, A., 2009. "Exergy vs information in ecological successions: Interpreting community changes by a classical thermodynamic approach," Ecological Modelling, Elsevier, vol. 220(13), pages 1566-1577.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jørgensen, Sven Erik & Ludovisi, Alessandro & Nielsen, Søren Nors, 2010. "The free energy and information embodied in the amino acid chains of organisms," Ecological Modelling, Elsevier, vol. 221(19), pages 2388-2392.
- Nielsen, S.N. & Müller, F., 2009. "Understanding the functional principles of nature—Proposing another type of ecosystem services," Ecological Modelling, Elsevier, vol. 220(16), pages 1913-1925.
- Doyeong Ku & Yeon-Ji Chae & Yerim Choi & Chang Woo Ji & Young-Seuk Park & Ihn-Sil Kwak & Yong-Jae Kim & Kwang-Hyeon Chang & Hye-Ji Oh, 2022. "Optimal Method for Biomass Estimation in a Cladoceran Species, Daphnia Magna (Straus, 1820): Evaluating Length–Weight Regression Equations and Deriving Estimation Equations Using Body Length, Width an," Sustainability, MDPI, vol. 14(15), pages 1-10, July.
- Küçük, Kübra & Tevatia, Rahul & Sorgüven, Esra & Demirel, Yaşar & Özilgen, Mustafa, 2015. "Bioenergetics of growth and lipid production in Chlamydomonas reinhardtii," Energy, Elsevier, vol. 83(C), pages 503-510.
- Liqiang Yang & Xiaotong He & Shaoguo Ru & Yongyu Zhang, 2024. "Herbicide leakage into seawater impacts primary productivity and zooplankton globally," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Jørgensen, Sven Erik, 2015. "New method to calculate the work energy of information and organisms," Ecological Modelling, Elsevier, vol. 295(C), pages 18-20.
- Jean-Éric Tremblay & Dominique Robert & Diana Varela & Connie Lovejoy & Gérald Darnis & R. Nelson & Akash Sastri, 2012. "Current state and trends in Canadian Arctic marine ecosystems: I. Primary production," Climatic Change, Springer, vol. 115(1), pages 161-178, November.
- Villaescusa, Juan Antonio & Jørgensen, Sven Erik & Rochera, Carlos & Velázquez, David & Quesada, Antonio & Camacho, Antonio, 2016. "Carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater Antarctic lake," Ecological Modelling, Elsevier, vol. 319(C), pages 21-30.
- Masuda, Yoshio & Yamanaka, Yasuhiro & Hirata, Takafumi & Nakano, Hideyuki & Kohyama, Takashi S., 2020. "Inhibition of competitive exclusion due to phytoplankton dispersion: a contribution for solving Hutchinson's paradox," Ecological Modelling, Elsevier, vol. 430(C).
- Ludovisi, Alessandro & Jørgensen, Sven Erik, 2009. "Comparison of exergy found by a classical thermodynamic approach and by the use of the information stored in the genome," Ecological Modelling, Elsevier, vol. 220(16), pages 1897-1903.
- Goebel, N.L. & Edwards, C.A. & Zehr, J.P. & Follows, M.J. & Morgan, S.G., 2013. "Modeled phytoplankton diversity and productivity in the California Current System," Ecological Modelling, Elsevier, vol. 264(C), pages 37-47.
- Joydev Chattopadhyay & Ezio Venturino & Samrat Chatterjee, 2013. "Aggregation of toxin-producing phytoplankton acts as a defence mechanism – a model-based study," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 19(2), pages 159-174, April.
- Marchi, Michela & Jørgensen, Sven Erik & Bécares, Eloy & Corsi, Ilaria & Marchettini, Nadia & Bastianoni, Simone, 2011. "Dynamic model of Lake Chozas (León, NW Spain)—Decrease in eco-exergy from clear to turbid phase due to introduction of exotic crayfish," Ecological Modelling, Elsevier, vol. 222(16), pages 3002-3010.
- Tsakalakis, Ioannis & Pahlow, Markus & Oschlies, Andreas & Blasius, Bernd & Ryabov, Alexey B., 2018. "Diel light cycle as a key factor for modelling phytoplankton biogeography and diversity," Ecological Modelling, Elsevier, vol. 384(C), pages 241-248.
- Jørgensen, S.E. & Nielsen, S.N., 2014. "Use of eco-exergy in ecological networks," Ecological Modelling, Elsevier, vol. 293(C), pages 202-209.
- Adjou, Mohamed & Bendtsen, Jørgen & Richardson, Katherine, 2012. "Modeling the influence from ocean transport, mixing and grazing on phytoplankton diversity," Ecological Modelling, Elsevier, vol. 225(C), pages 19-27.
- Dehao Tang & Xingjian Liu & Xutao Wang & Kedong Yin, 2018. "Relationship between the Main Communities and Environments of an Urban River and Reservoir: Considering Integrated Structural and Functional Assessments of Ecosystems," IJERPH, MDPI, vol. 15(10), pages 1-22, October.
- Straškraba, Milan & Jørgensen, Sven E. & Patten, Bernard C., 2014. "Ecosystems emerging: 6. Differentiation," Ecological Modelling, Elsevier, vol. 278(C), pages 29-51.
- Banas, Neil S., 2011. "Adding complex trophic interactions to a size-spectral plankton model: Emergent diversity patterns and limits on predictability," Ecological Modelling, Elsevier, vol. 222(15), pages 2663-2675.
- Katharina Hecht & Abraham Ortega Reboso & Michelle van der Vegt & Jaco Appelman & Maibritt Pedersen Zari, 2024. "Ecologically Regenerative Building Systems through Exergy Efficiency: Designing for Structural Order and Ecosystem Services," Land, MDPI, vol. 13(9), pages 1-18, August.
More about this item
Keywords
Thermodynamic orientors; Structural information; Ecological succession; Transitional waters; Size spectrum;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:245:y:2012:i:c:p:125-135. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.