IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v225y2012icp146-158.html
   My bibliography  Save this article

A modeling framework for integrated harvest and habitat management of North American waterfowl: Case-study of northern pintail metapopulation dynamics

Author

Listed:
  • Mattsson, B.J.
  • Runge, M.C.
  • Devries, J.H.
  • Boomer, G.S.
  • Eadie, J.M.
  • Haukos, D.A.
  • Fleskes, J.P.
  • Koons, D.N.
  • Thogmartin, W.E.
  • Clark, R.G.

Abstract

We developed and evaluated the performance of a metapopulation model enabling managers to examine, for the first time, the consequences of alternative management strategies involving habitat conditions and hunting on both harvest opportunity and carrying capacity (i.e., equilibrium population size in the absence of harvest) for migratory waterfowl at a continental scale. Our focus is on the northern pintail (Anas acuta; hereafter, pintail), which serves as a useful model species to examine the potential for integrating waterfowl harvest and habitat management in North America. We developed submodel structure capturing important processes for pintail populations during breeding, fall migration, winter, and spring migration while encompassing spatial structure representing three core breeding areas and two core nonbreeding areas. A number of continental-scale predictions from our baseline parameterization (e.g., carrying capacity of 5.5 million, equilibrium population size of 2.9 million and harvest rate of 12% at maximum sustained yield [MSY]) were within 10% of those from the pintail harvest strategy under current use by the U.S. Fish and Wildlife Service. To begin investigating the interaction of harvest and habitat management, we examined equilibrium population conditions for pintail at the continental scale across a range of harvest rates while perturbing model parameters to represent: (1) a 10% increase in breeding habitat quality in the Prairie Pothole population (PR); and (2) a 10% increase in nonbreeding habitat quantity along in the Gulf Coast (GC). Based on our model and analysis, a greater increase in carrying capacity and sustainable harvest was seen when increasing a proxy for habitat quality in the Prairie Pothole population. This finding and underlying assumptions must be critically evaluated, however, before specific management recommendations can be made. To make such recommendations, we require (1) extended, refined submodels with additional parameters linking influences of habitat management and environmental conditions to key life-history parameters; (2) a formal sensitivity analysis of the revised model; (3) an integrated population model that incorporates empirical data for estimating key vital rates; and (4) cost estimates for changing these additional parameters through habitat management efforts. We foresee great utility in using an integrated modeling approach to predict habitat and harvest management influences on continental-scale population responses while explicitly considering putative effects of climate change. Such a model could be readily adapted for management of many habitat-limited species.

Suggested Citation

  • Mattsson, B.J. & Runge, M.C. & Devries, J.H. & Boomer, G.S. & Eadie, J.M. & Haukos, D.A. & Fleskes, J.P. & Koons, D.N. & Thogmartin, W.E. & Clark, R.G., 2012. "A modeling framework for integrated harvest and habitat management of North American waterfowl: Case-study of northern pintail metapopulation dynamics," Ecological Modelling, Elsevier, vol. 225(C), pages 146-158.
  • Handle: RePEc:eee:ecomod:v:225:y:2012:i:c:p:146-158
    DOI: 10.1016/j.ecolmodel.2011.10.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011005242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.10.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hovestadt, Thomas & Kubisch, Alexander & Poethke, Hans-Joachim, 2010. "Information processing in models for density-dependent emigration: A comparison," Ecological Modelling, Elsevier, vol. 221(3), pages 405-410.
    2. Mooij, W.M. & De Senerpont Domis, L.N. & Janse, J.H., 2009. "Linking species- and ecosystem-level impacts of climate change in lakes with a complex and a minimal model," Ecological Modelling, Elsevier, vol. 220(21), pages 3011-3020.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sample, Christine & Bieri, Joanna A. & Allen, Benjamin & Dementieva, Yulia & Carson, Alyssa & Higgins, Connor & Piatt, Sadie & Qiu, Shirley & Stafford, Summer & Mattsson, Brady J. & Semmens, Darius J., 2019. "Quantifying source and sink habitats and pathways in spatially structured populations: A generalized modelling approach," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekaterini Hadjisolomou & Konstantinos Stefanidis & George Papatheodorou & Evanthia Papastergiadou, 2016. "Assessing the Contribution of the Environmental Parameters to Eutrophication with the Use of the “PaD” and “PaD2” Methods in a Hypereutrophic Lake," IJERPH, MDPI, vol. 13(8), pages 1-14, July.
    2. Poethke, Hans Joachim & Kubisch, Alexander & Mitesser, Oliver & Hovestadt, Thomas, 2016. "The evolution of density-dependent dispersal under limited information," Ecological Modelling, Elsevier, vol. 338(C), pages 1-10.
    3. Osakpolor, Stephen E. & Kattwinkel, Mira & Schirmel, Jens & Feckler, Alexander & Manfrin, Alessandro & Schäfer, Ralf B., 2021. "Mini-review of process-based food web models and their application in aquatic-terrestrial meta-ecosystems," Ecological Modelling, Elsevier, vol. 458(C).
    4. Salau, Kehinde & Schoon, Michael L. & Baggio, Jacopo A. & Janssen, Marco A., 2012. "Varying effects of connectivity and dispersal on interacting species dynamics," Ecological Modelling, Elsevier, vol. 242(C), pages 81-91.
    5. Taner, Mehmet Ümit & Carleton, James N. & Wellman, Marjorie, 2011. "Integrated model projections of climate change impacts on a North American lake," Ecological Modelling, Elsevier, vol. 222(18), pages 3380-3393.
    6. Temidayo Olowoyeye & Mariusz Ptak & Mariusz Sojka, 2023. "How Do Extreme Lake Water Temperatures in Poland Respond to Climate Change?," Resources, MDPI, vol. 12(9), pages 1-19, September.
    7. Shahram Missaghi & Miki Hondzo & William Herb, 2017. "Prediction of lake water temperature, dissolved oxygen, and fish habitat under changing climate," Climatic Change, Springer, vol. 141(4), pages 747-757, April.
    8. Chaianunporn, Thotsapol & Hovestadt, Thomas, 2019. "Dispersal evolution in metacommunities of tri-trophic systems," Ecological Modelling, Elsevier, vol. 395(C), pages 28-38.
    9. Zhang, Chen & Zhu, Zixuan & Špoljar, Maria & Kuczyńska-Kippen, Natalia & Dražina, Tvrtko & Cvetnić, Matija & Mleczek, Mirosław, 2022. "Ecosystem models indicate zooplankton biomass response to nutrient input and climate warming is related to lake size," Ecological Modelling, Elsevier, vol. 464(C).
    10. Sion, Antoine & Marcantonio, Matteo & Masier, Stefano & Tuci, Elio, 2025. "On the evolution of dispersal strategies under the costs of acquisition of private and social information," Ecological Modelling, Elsevier, vol. 501(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:225:y:2012:i:c:p:146-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.