IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v217y2008i1p95-116.html
   My bibliography  Save this article

Food-web dynamics in the South Catalan Sea ecosystem (NW Mediterranean) for 1978–2003

Author

Listed:
  • Coll, Marta
  • Palomera, Isabel
  • Tudela, Sergi
  • Dowd, Michael

Abstract

An ecosystem model representing the continental shelf and upper slope of the South Catalan Sea (NW Mediterranean) is calibrated and fitted to the available time series data from 1978 to 2003. We use a process-oriented model to explore the extent to which changes in marine resources and the ecosystem were driven by trophic interactions, environmental factors and fishing activities. Fishing effort and fishing mortality are used to drive the model, while observed (absolute and relative) biomasses and catches are compared with the predicted results. A reduction in the sum of the squared deviations of the observed and predicted values of the biomass is used as a metric for calibrating and assessing the fit of the model. A posteriori trophodynamic indicators are used to explore the ecosystem's structural and functional changes from 1978 to 2003, and a generalized least squares regression is used to assess the significance of the predicted trends. In general, a high proportion of the variability in the time series data is explained by the main trophic interactions (37–53%), fishing activities (14%), and indirectly by considering the environment (6–16%), as driving factors. The model's predictions match satisfactorily with the yearly data on the biomass for anglerfish, adult hake, demersal sharks, anchovy and mackerel, which show a statistically significant decrease over time, while the biomass of flatfish and seabirds are observed to increase. Catch data show a significant decrease in anglerfish, demersal sharks, anchovy and sardine, while there is an increase in red mullet, flatfish, juvenile hake and horse mackerel. These changes in biomass are predicted to have direct and indirect impacts on the ecosystem mediated by the trophic web, such as the proliferation of non-commercial species with lower trophic levels (e.g., benthic invertebrates) or higher turnover rates (e.g., cephalopods and benthopelagic fish). This is consistent with anecdotal information from the Mediterranean and is likely caused by trophic cascades due to the removal of demersal and pelagic higher trophic level organisms (predator release), and a decrease in small pelagic fish (competitor release). Trophodynamic indicators suggest a degradation pattern over time: both the mean trophic level of the community (mTLco, excluding primary producers and detritus) and a modified version of Kempton's index of biodiversity decrease with time, while the total flow to detritus and the loss of production due to fishing increase from 1978 to 2003. Additionally, the demersal/pelagic ratio increases due to an overall decrease in the abundance of small pelagic fish in the ecosystem.

Suggested Citation

  • Coll, Marta & Palomera, Isabel & Tudela, Sergi & Dowd, Michael, 2008. "Food-web dynamics in the South Catalan Sea ecosystem (NW Mediterranean) for 1978–2003," Ecological Modelling, Elsevier, vol. 217(1), pages 95-116.
  • Handle: RePEc:eee:ecomod:v:217:y:2008:i:1:p:95-116
    DOI: 10.1016/j.ecolmodel.2008.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008002925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piroddi, Chiara & Giovanni, Bearzi & Villy, Christensen, 2010. "Effects of local fisheries and ocean productivity on the northeastern Ionian Sea ecosystem," Ecological Modelling, Elsevier, vol. 221(11), pages 1526-1544.
    2. Milessi, Andrés C. & Danilo, Calliari & Laura, Rodríguez-Graña & Daniel, Conde & Javier, Sellanes & Rodríguez-Gallego, Lorena, 2010. "Trophic mass-balance model of a subtropical coastal lagoon, including a comparison with a stable isotope analysis of the food-web," Ecological Modelling, Elsevier, vol. 221(24), pages 2859-2869.
    3. Tomczak, M.T. & Niiranen, S. & Hjerne, O. & Blenckner, T., 2012. "Ecosystem flow dynamics in the Baltic Proper—Using a multi-trophic dataset as a basis for food–web modelling," Ecological Modelling, Elsevier, vol. 230(C), pages 123-147.
    4. Antony, P.J. & Dhanya, S. & Lyla, P.S. & Kurup, B.M. & Ajmal Khan, S., 2010. "Ecological role of stomatopods (mantis shrimps) and potential impacts of trawling in a marine ecosystem of the southeast coast of India," Ecological Modelling, Elsevier, vol. 221(21), pages 2604-2614.
    5. Chiara Paoli & Paolo Povero & Ilaria Rigo & Giulia Dapueto & Rachele Bordoni & Paolo Vassallo, 2022. "Two Sides of the Same Coin: A Theoretical Framework for Strong Sustainability in Marine Protected Areas," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
    6. Heymans, Johanna Jacomina & Coll, Marta & Link, Jason S. & Mackinson, Steven & Steenbeek, Jeroen & Walters, Carl & Christensen, Villy, 2016. "Best practice in Ecopath with Ecosim food-web models for ecosystem-based management," Ecological Modelling, Elsevier, vol. 331(C), pages 173-184.
    7. Angelini, Ronaldo & de Morais, Ronny José & Catella, Agostinho Carlos & Resende, Emiko Kawakami & Libralato, Simone, 2013. "Aquatic food webs of the oxbow lakes in the Pantanal: A new site for fisheries guaranteed by alternated control?," Ecological Modelling, Elsevier, vol. 253(C), pages 82-96.
    8. Paoli, C. & Povero, P. & Burgos, E. & Dapueto, G. & Fanciulli, G. & Massa, F. & Scarpellini, P. & Vassallo, P., 2018. "Natural capital and environmental flows assessment in marine protected areas: The case study of Liguria region (NW Mediterranean Sea)," Ecological Modelling, Elsevier, vol. 368(C), pages 121-135.
    9. Kleisner, Kristin M. & Coll, Marta & Lynam, Christopher P. & Bundy, Alida & Shannon, Lynne & Shin, Yunne-Jai & Boldt, Jennifer L. & Maria F., Borges & Diallo, Ibrahima & Fox, Clive & Gascuel, Didier &, 2015. "Evaluating changes in marine communities that provide ecosystem services through comparative assessments of community indicators," Ecosystem Services, Elsevier, vol. 16(C), pages 413-429.
    10. Coll, M. & Pennino, M. Grazia & Steenbeek, J. & Sole, J. & Bellido, J.M., 2019. "Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches," Ecological Modelling, Elsevier, vol. 405(C), pages 86-101.
    11. Coll, Marta & Steenbeek, Jeroen & Sole, Jordi & Palomera, Isabel & Christensen, Villy, 2016. "Modelling the cumulative spatial–temporal effects of environmental drivers and fishing in a NW Mediterranean marine ecosystem," Ecological Modelling, Elsevier, vol. 331(C), pages 100-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:217:y:2008:i:1:p:95-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.