IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v200y2007i1p149-159.html
   My bibliography  Save this article

Modeling pesticide fate in a small tidal estuary

Author

Listed:
  • McCarthy, Annette M.
  • Bales, Jerad D.
  • Cope, W. Gregory
  • Shea, Damian

Abstract

The exposure analysis modeling system (EXAMS), a pesticide fate model developed by the U.S. Environmental Protection Agency, was modified to model the fate of the herbicides atrazine and metolachlor in a small tidally dominated estuary (Bath Creek) in North Carolina, USA where freshwater inflow accounts for only 3% of the total flow. The modifications simulated the changes that occur during the tidal cycle in the estuary, scenarios that are not possible with the original EXAMS model. Two models were created within EXAMS, a steady-state model and a time-variant tidally driven model. The steady-state model accounted for tidal flushing by simply altering freshwater input to yield an estuary residence time equal to that measured in Bath Creek. The tidal EXAMS model explicitly incorporated tidal flushing by modifying the EXAMS code to allow for temporal changes in estuary physical attributes (e.g., volume). The models were validated with empirical measurements of atrazine and metolachlor concentrations in the estuary shortly after herbicide application in nearby fields and immediately following a rain event. Both models provided excellent agreement with measured concentrations. The steady-state EXAMS model accurately predicted atrazine concentrations in the middle of the estuary over the first 3 days and under-predicted metolachlor by a factor of 2–3. The time-variant, tidally driven EXAMS model accurately predicted the rise and plateau of both herbicides over the 6-day measurement period. We have demonstrated the ability of these modified EXAMS models to be useful in predicting pesticide fate and exposure in small tidal estuaries. This is a significant improvement and expansion of the application of EXAMS, and given the wide use of EXAMS for surface water quality modeling by both researchers and regulators and the ability of EXAMS to interface with terrestrial models (e.g., pesticide root zone model) and bioaccumulation models, we now have an easily-accessible and widely accepted means of modeling chemical fate in estuaries.

Suggested Citation

  • McCarthy, Annette M. & Bales, Jerad D. & Cope, W. Gregory & Shea, Damian, 2007. "Modeling pesticide fate in a small tidal estuary," Ecological Modelling, Elsevier, vol. 200(1), pages 149-159.
  • Handle: RePEc:eee:ecomod:v:200:y:2007:i:1:p:149-159
    DOI: 10.1016/j.ecolmodel.2006.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380006003176
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2006.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trevisan, M. & Errera, G. & Goerlitz, G. & Remy, B. & Sweeney, P., 2000. "Modelling ethoprophos and bentazone fate in a sandy humic soil with primary pesticide fate model PRZM-2," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 317-335, May.
    2. Rekolainen, S. & Gouy, V. & Francaviglia, R. & Eklo, O. -M. & Barlund, I., 2000. "Simulation of soil water, bromide and pesticide behaviour in soil with the G model," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 201-224, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gottesburen, B. & Aden, K. & Barlund, I. & Brown, C. & Dust, M. & Gorlitz, G. & Jarvis, N. & Rekolainen, S. & Schafer, H., 2000. "Comparison of pesticide leaching models: results using the Weiherbach data set," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 153-181, May.
    2. Vanclooster, M. & Boesten, J. J. T. I. & Trevisan, M. & Brown, C. D. & Capri, E. & Eklo, O. M. & Gottesburen, B. & Gouy, V. & van der Linden, A. M. A., 2000. "A European test of pesticide-leaching models: methodology and major recommendations," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 1-19, May.
    3. Noshadi, Masoud & Jamshidi, Sajad, 2014. "Modification of water movement equations in the PRZM3 for simulating pesticides in soil profile," Agricultural Water Management, Elsevier, vol. 143(C), pages 38-47.
    4. van der Laan, M. & Annandale, J.G. & Bristow, K.L. & Stirzaker, R.J. & Preez, C.C. du & Thorburn, P.J., 2014. "Modelling nitrogen leaching: Are we getting the right answer for the right reason?," Agricultural Water Management, Elsevier, vol. 133(C), pages 74-80.
    5. Wallis, K.J. & Candela, L. & Mateos, R.M. & Tamoh, K., 2011. "Simulation of nitrate leaching under potato crops in a Mediterranean area. Influence of frost prevention irrigation on nitrogen transport," Agricultural Water Management, Elsevier, vol. 98(10), pages 1629-1640, August.
    6. Francaviglia, R. & Capri, E. & Klein, M. & Hosang, J. & Aden, K. & Trevisan, M. & Errera, G., 2000. "Comparing and evaluating pesticide leaching models: results for the Tor Mancina data set (Italy)," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 135-151, May.
    7. Xue, Jingyuan & Na, Qin & Zhang, Xuyang & Grieneisen, Michael L. & Lai, Quan & Zhang, Minghua, 2023. "CalBMP, a web-based modeling tool for evaluating pesticide offsite movement and best management practice scenarios in California agricultural land," Agricultural Water Management, Elsevier, vol. 277(C).
    8. Ricardo Pérez-Indoval & Javier Rodrigo-Ilarri & Eduardo Cassiraga & María-Elena Rodrigo-Clavero, 2021. "Numerical Modeling of Groundwater Pollution by Chlorpyrifos, Bromacil and Terbuthylazine. Application to the Buñol-Cheste Aquifer (Spain)," IJERPH, MDPI, vol. 18(7), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:200:y:2007:i:1:p:149-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.