IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v75y2014icp15-27.html

A joint convex penalty for inverse covariance matrix estimation

Author

Listed:
  • Maurya, Ashwini

Abstract

The paper proposes a joint convex penalty for estimating the Gaussian inverse covariance matrix. A proximal gradient method is developed to solve the resulting optimization problem with more than one penalty constraints. The analysis shows that imposing a single constraint is not enough and the estimator can be improved by a trade-off between two convex penalties. The developed framework can be extended to solve wide arrays of constrained convex optimization problems. A simulation study is carried out to compare the performance of the proposed method to graphical lasso and the SPICE estimate of the inverse covariance matrix.

Suggested Citation

  • Maurya, Ashwini, 2014. "A joint convex penalty for inverse covariance matrix estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 15-27.
  • Handle: RePEc:eee:csdana:v:75:y:2014:i:c:p:15-27
    DOI: 10.1016/j.csda.2014.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314000267
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sheena Yo & Gupta Arjun K., 2003. "Estimation of the multivariate normal covariance matrix under some restrictions," Statistics & Risk Modeling, De Gruyter, vol. 21(4), pages 327-342, April.
    2. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Ying & Leng, Chenlei & Sun, Defeng, 2016. "Sparse estimation of high-dimensional correlation matrices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 390-403.
    2. Huang Lin & Merete Eggesbø & Shyamal Das Peddada, 2022. "Linear and nonlinear correlation estimators unveil undescribed taxa interactions in microbiome data," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Vahe Avagyan & Andrés M. Alonso & Francisco J. Nogales, 2018. "D-trace estimation of a precision matrix using adaptive Lasso penalties," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 425-447, June.
    4. Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
    5. Avagyan, Vahe & Alonso Fernández, Andrés Modesto & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Peili & Xiao, Yunhai, 2018. "An efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 292-307.
    2. Vincenzo Bonifaci, 2021. "A Laplacian approach to $$\ell _1$$ ℓ 1 -norm minimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 441-469, June.
    3. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    4. Xiubo Liang & Guoqiang Wang & Bo Yu, 2022. "A reduced proximal-point homotopy method for large-scale non-convex BQP," Computational Optimization and Applications, Springer, vol. 81(2), pages 539-567, March.
    5. Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
    6. Avagyan, Vahe & Alonso Fernández, Andrés Modesto & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Gao, Zhenguo & Wang, Xinye & Kang, Xiaoning, 2023. "Ensemble LDA via the modified Cholesky decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    8. Byrd, Michael & Nghiem, Linh H. & McGee, Monnie, 2021. "Bayesian regularization of Gaussian graphical models with measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    9. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
    10. Huynh Ngai & Ta Anh Son, 2022. "Generalized Nesterov’s accelerated proximal gradient algorithms with convergence rate of order o(1/k2)," Computational Optimization and Applications, Springer, vol. 83(2), pages 615-649, November.
    11. Yunxi Zhang & Soeun Kim, 2024. "Gaussian Graphical Model Estimation and Selection for High-Dimensional Incomplete Data Using Multiple Imputation and Horseshoe Estimators," Mathematics, MDPI, vol. 12(12), pages 1-15, June.
    12. Duo Jiang & Thomas Sharpton & Yuan Jiang, 2021. "Microbial Interaction Network Estimation via Bias-Corrected Graphical Lasso," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 329-350, July.
    13. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    14. Giraud Christophe & Huet Sylvie & Verzelen Nicolas, 2012. "Graph Selection with GGMselect," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-52, February.
    15. Shipra Agrawal & Nikhil R. Devanur, 2019. "Bandits with Global Convex Constraints and Objective," Operations Research, INFORMS, vol. 67(5), pages 1486-1502, September.
    16. Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
    17. Samid Hoda & Andrew Gilpin & Javier Peña & Tuomas Sandholm, 2010. "Smoothing Techniques for Computing Nash Equilibria of Sequential Games," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 494-512, May.
    18. Raphael Hauser & Sergey Shahverdyan, 2015. "A New Approach to Model Free Option Pricing," Papers 1501.03701, arXiv.org.
    19. Yuta Umezu & Yusuke Shimizu & Hiroki Masuda & Yoshiyuki Ninomiya, 2019. "AIC for the non-concave penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 247-274, April.
    20. Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:75:y:2014:i:c:p:15-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.