IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i7p2288-2302.html
   My bibliography  Save this article

Least squares type estimation for Cox regression model and specification error

Author

Listed:
  • Gradowska, P.L.
  • Cooke, R.M.

Abstract

A new estimation procedure for the Cox proportional hazards model is introduced. The method proposed employs the sample covariance matrix of model covariates and alternates between estimating the baseline cumulative hazard function and estimating model coefficients. It is shown that the estimating equation for model parameters resembles the least squares estimate in a linear regression model, where the outcome variable is the transformed event time. As a result an explicit expression for the difference in the parameter estimates between nested models can be derived. Nesting occurs when the covariates of one model are a subset of the covariates of the other. The new method applies mainly to the uncensored data, but its extension to the right censored observations is also proposed.

Suggested Citation

  • Gradowska, P.L. & Cooke, R.M., 2012. "Least squares type estimation for Cox regression model and specification error," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2288-2302.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:7:p:2288-2302
    DOI: 10.1016/j.csda.2012.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312000084
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Devarajan, Karthik & Ebrahimi, Nader, 2011. "A semi-parametric generalization of the Cox proportional hazards regression model: Inference and applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 667-676, January.
    2. Kani Chen, 2002. "Semiparametric analysis of transformation models with censored data," Biometrika, Biometrika Trust, vol. 89(3), pages 659-668, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xuan & Wang, Qihua, 2015. "Semiparametric linear transformation model with differential measurement error and validation sampling," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 67-80.
    2. Jin-Jian Hsieh & A. Adam Ding & Weijing Wang, 2011. "Regression Analysis for Recurrent Events Data under Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 719-729, September.
    3. Yanqing Sun & Rajeshwari Sundaram & Yichuan Zhao, 2009. "Empirical Likelihood Inference for the Cox Model with Time‐dependent Coefficients via Local Partial Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 444-462, September.
    4. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
    5. Wang, Qihua & Tong, Xingwei & Sun, Liuquan, 2012. "Exploring the varying covariate effects in proportional odds models with censored data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 168-189.
    6. López-Cheda, Ana & Cao, Ricardo & Jácome, M. Amalia & Van Keilegom, Ingrid, 2017. "Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 144-165.
    7. Lu Mao & Dan-Yu Lin & Donglin Zeng, 2017. "Semiparametric regression analysis of interval-censored competing risks data," Biometrics, The International Biometric Society, vol. 73(3), pages 857-865, September.
    8. Jianbo Li & Minggao Gu & Tao Hu, 2012. "General partially linear varying-coefficient transformation models for ranking data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1475-1488, January.
    9. Min Zhang & Marie Davidian, 2008. "“Smooth” Semiparametric Regression Analysis for Arbitrarily Censored Time-to-Event Data," Biometrics, The International Biometric Society, vol. 64(2), pages 567-576, June.
    10. Jiajia Zhang & Timothy Hanson & Haiming Zhou, 2019. "Bayes factors for choosing among six common survival models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 361-379, April.
    11. Xi Ning & Yinghao Pan & Yanqing Sun & Peter B. Gilbert, 2023. "A semiparametric Cox–Aalen transformation model with censored data," Biometrics, The International Biometric Society, vol. 79(4), pages 3111-3125, December.
    12. Chun Li & Yuqi Tian & Donglin Zeng & Bryan E. Shepherd, 2023. "Asymptotic Properties for Cumulative Probability Models for Continuous Outcomes," Mathematics, MDPI, vol. 11(24), pages 1-21, December.
    13. Kulinskaya, Elena & Gitsels, Lisanne A. & Bakbergenuly, Ilyas & Wright, Nigel R., 2020. "Calculation of changes in life expectancy based on proportional hazards model of an intervention," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 27-35.
    14. Sho Komukai & Satoshi Hattori, 2017. "Doubly robust estimator for net survival rate in analyses of cancer registry data," Biometrics, The International Biometric Society, vol. 73(1), pages 124-133, March.
    15. Ying Qing Chen & Nan Hu & Su-Chun Cheng & Philippa Musoke & Lue Ping Zhao, 2012. "Estimating Regression Parameters in an Extended Proportional Odds Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 318-330, March.
    16. Pao-sheng Shen, 2011. "Semiparametric analysis of transformation models with left-truncated and right-censored data," Computational Statistics, Springer, vol. 26(3), pages 521-537, September.
    17. Lin, Huazhen & Peng, Heng, 2013. "Smoothed rank correlation of the linear transformation regression model," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 615-630.
    18. Pao-Sheng Shen, 2012. "Semiparametric mixed-effects models for clustered doubly censored data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(9), pages 1881-1892, April.
    19. Lopez-Cheda , Ana & Cao, Ricardo & Jacome, Maria Amalia & Van Keilegom, Ingrid, 2015. "Nonparametric incidence and latency estimation in mixture cure models," LIDAM Discussion Papers ISBA 2015014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Mengling Liu & Zhiliang Ying, 2007. "Joint Analysis of Longitudinal Data with Informative Right Censoring," Biometrics, The International Biometric Society, vol. 63(2), pages 363-371, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:7:p:2288-2302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.