IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A goodness-of-fit test for parametric models based on dependently truncated data

Listed author(s):
  • Emura, Takeshi
  • Konno, Yoshihiko

Suppose that one can observe bivariate random variables (L,X) only when L≤X holds. Such data are called left-truncated data and found in many fields, such as experimental education and epidemiology. Recently, a method of fitting a parametric model on (L,X) has been considered, which can easily incorporate the dependent structure between the two variables. A primary concern for the parametric analysis is the goodness-of-fit for the imposed parametric forms. Due to the complexity of dependent truncation models, the traditional goodness-of-fit procedures, such as Kolmogorov–Smirnov type tests based on the Bootstrap approximation to null distribution, may not be computationally feasible. In this paper, we develop a computationally attractive and reliable algorithm for the goodness-of-fit test based on the asymptotic linear expression. By applying the multiplier central limit theorem to the asymptotic linear expression, we obtain an asymptotically valid goodness-of-fit test. Monte Carlo simulations show that the proposed test has correct type I error rates and desirable empirical power. It is also shown that the method significantly reduces the computational time compared with the commonly used parametric Bootstrap method. Analysis on law school data is provided for illustration. R codes for implementing the proposed procedure are available in the supplementary material.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 56 (2012)
Issue (Month): 7 ()
Pages: 2237-2250

in new window

Handle: RePEc:eee:csdana:v:56:y:2012:i:7:p:2237-2250
DOI: 10.1016/j.csda.2011.12.022
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Dietz, Ekkehart & Bohning, Dankmar, 2000. "On estimation of the Poisson parameter in zero-modified Poisson models," Computational Statistics & Data Analysis, Elsevier, vol. 34(4), pages 441-459, October.
  2. Lajmi Lakhal Chaieb & Louis-Paul Rivest & Belkacem Abdous, 2006. "Estimating survival under a dependent truncation," Biometrika, Biometrika Trust, vol. 93(3), pages 655-669, September.
  3. Martin, Emily C. & Betensky, Rebecca A., 2005. "Testing Quasi-Independence of Failure and Truncation Times via Conditional Kendall's Tau," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 484-492, June.
  4. Bücher, Axel & Dette, Holger, 2010. "A note on bootstrap approximations for the empirical copula process," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1925-1932, December.
  5. Takeshi Emura & Yoshihiko Konno, 2012. "Multivariate normal distribution approaches for dependently truncated data," Statistical Papers, Springer, vol. 53(1), pages 133-149, February.
  6. Zhezhen Jin, 2003. "Rank-based inference for the accelerated failure time model," Biometrika, Biometrika Trust, vol. 90(2), pages 341-353, June.
  7. Emura, Takeshi & Wang, Weijing, 2010. "Testing quasi-independence for truncation data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 223-239, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:7:p:2237-2250. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.