On efficient estimation in additive hazards regression with current status data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2011.12.011
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
- Torben Martinussen, 2002. "Efficient estimation in additive hazards regression with current status data," Biometrika, Biometrika Trust, vol. 89(3), pages 649-658, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ce Zhang & Haiwu Huang & Dipankar Bandyopadhyay & Riyadh Rustam Al-Mosawi & Xuewen Lu, 2025. "Sieve Estimation of the Additive Hazards Model with Bivariate Current Status Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 17(2), pages 251-296, July.
- Shanshan Lu & Jingjing Wu & Xuewen Lu, 2019. "Efficient estimation of the varying-coefficient partially linear proportional odds model with current status data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 173-194, March.
- Zhiguo Li & Kouros Owzar, 2016. "Fitting Cox Models with Doubly Censored Data Using Spline-Based Sieve Marginal Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 476-486, June.
- Xiaoguang Wang & Ziwen Wang, 2021. "EM algorithm for the additive risk mixture cure model with interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 91-130, January.
- Baihua He & Yanyan Liu & Yuanshan Wu & Xingqiu Zhao, 2020. "Semiparametric efficient estimation for additive hazards regression with case II interval-censored survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 708-730, October.
- Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
- Ma, Ling & Hu, Tao & Sun, Jianguo, 2016. "Cox regression analysis of dependent interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 79-90.
- Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
- Prabhashi W. Withana Gamage & Monica Chaudari & Christopher S. McMahan & Edwin H. Kim & Michael R. Kosorok, 2020. "An extended proportional hazards model for interval-censored data subject to instantaneous failures," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 158-182, January.
- Eddie Anderson & Artem Prokhorov & Yajing Zhu, 2020. "A Simple Estimator of Two‐Dimensional Copulas, with Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1375-1412, December.
- Li, Shuwei & Hu, Tao & Wang, Peijie & Sun, Jianguo, 2017. "Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 75-86.
- Shuangge Ma, 2011. "Additive risk model for current status data with a cured subgroup," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 117-134, February.
- Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
- Debashis Ghosh, 2003. "Goodness-of-Fit Methods for Additive-Risk Models in Tumorigenicity Experiments," Biometrics, The International Biometric Society, vol. 59(3), pages 721-726, September.
- Yanqing Sun & Qingning Zhou & Peter B. Gilbert, 2023. "Analysis of the Cox Model with Longitudinal Covariates with Measurement Errors and Partly Interval Censored Failure Times, with Application to an AIDS Clinical Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 430-454, July.
- Xuewen Lu & Peter X.-K. Song, 2015. "Efficient Estimation of the Partly Linear Additive Hazards Model with Current Status Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 306-328, March.
- Yuan Wu & Christina D. Chambers & Ronghui Xu, 2019. "Semiparametric sieve maximum likelihood estimation under cure model with partly interval censored and left truncated data for application to spontaneous abortion," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 507-528, July.
- Cheng, Guang & Zhou, Lan & Chen, Xiaohong & Huang, Jianhua Z., 2014. "Efficient estimation of semiparametric copula models for bivariate survival data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 330-344.
- Da Xu & Hui Zhao & Jianguo Sun, 2018. "Joint analysis of interval-censored failure time data and panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 94-109, January.
- Li, Chenxi, 2016. "The Fine–Gray model under interval censored competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 327-344.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:2051-2058. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p2051-2058.html