IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v37y2010i2p338-354.html
   My bibliography  Save this article

A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data

Author

Listed:
  • YING ZHANG
  • LEI HUA
  • JIAN HUANG

Abstract

. We propose a spline‐based semiparametric maximum likelihood approach to analysing the Cox model with interval‐censored data. With this approach, the baseline cumulative hazard function is approximated by a monotone B‐spline function. We extend the generalized Rosen algorithm to compute the maximum likelihood estimate. We show that the estimator of the regression parameter is asymptotically normal and semiparametrically efficient, although the estimator of the baseline cumulative hazard function converges at a rate slower than root‐n. We also develop an easy‐to‐implement method for consistently estimating the standard error of the estimated regression parameter, which facilitates the proposed inference procedure for the Cox model with interval‐censored data. The proposed method is evaluated by simulation studies regarding its finite sample performance and is illustrated using data from a breast cosmesis study.

Suggested Citation

  • Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
  • Handle: RePEc:bla:scjsta:v:37:y:2010:i:2:p:338-354
    DOI: 10.1111/j.1467-9469.2009.00680.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2009.00680.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2009.00680.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jamshidian, Mortaza, 2004. "On algorithms for restricted maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 137-157, March.
    2. Tianxi Cai & Rebecca A. Betensky, 2003. "Hazard Regression for Interval-Censored Data with Penalized Spline," Biometrics, The International Biometric Society, vol. 59(3), pages 570-579, September.
    3. William B. Goggins & Dianne M. Finkelstein, 2000. "A Proportional Hazards Model for Multivariate Interval-Censored Failure Time Data," Biometrics, The International Biometric Society, vol. 56(3), pages 940-943, September.
    4. Torben Martinussen, 2002. "Efficient estimation in additive hazards regression with current status data," Biometrika, Biometrika Trust, vol. 89(3), pages 649-658, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lianming Wang & David B. Dunson, 2011. "Semiparametric Bayes' Proportional Odds Models for Current Status Data with Underreporting," Biometrics, The International Biometric Society, vol. 67(3), pages 1111-1118, September.
    2. Zhiguo Li & Kouros Owzar, 2016. "Fitting Cox Models with Doubly Censored Data Using Spline-Based Sieve Marginal Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 476-486, June.
    3. Baihua He & Yanyan Liu & Yuanshan Wu & Xingqiu Zhao, 2020. "Semiparametric efficient estimation for additive hazards regression with case II interval-censored survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 708-730, October.
    4. Pao-sheng Shen, 2013. "Regression analysis of interval censored and doubly truncated data with linear transformation models," Computational Statistics, Springer, vol. 28(2), pages 581-596, April.
    5. Chen, Ling & Sun, Jianguo, 2010. "A multiple imputation approach to the analysis of interval-censored failure time data with the additive hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1109-1116, April.
    6. Debashis Ghosh, 2003. "Goodness-of-Fit Methods for Additive-Risk Models in Tumorigenicity Experiments," Biometrics, The International Biometric Society, vol. 59(3), pages 721-726, September.
    7. Prabhashi W. Withana Gamage & Christopher S. McMahan & Lianming Wang, 2023. "A flexible parametric approach for analyzing arbitrarily censored data that are potentially subject to left truncation under the proportional hazards model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 188-212, January.
    8. Kauermann, Goran & Xu, Ronghui & Vaida, Florin, 2008. "Stacked Laplace-EM algorithm for duration models with time-varying and random effects," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2514-2528, January.
    9. Yichen Lou & Peijie Wang & Jianguo Sun, 2023. "A semi-parametric weighted likelihood approach for regression analysis of bivariate interval-censored outcomes from case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 628-653, July.
    10. Donglin Zeng & Fei Gao & D. Y. Lin, 2017. "Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data," Biometrika, Biometrika Trust, vol. 104(3), pages 505-525.
    11. David B. Dunson & Gregg E. Dinse, 2002. "Bayesian Models for Multivariate Current Status Data with Informative Censoring," Biometrics, The International Biometric Society, vol. 58(1), pages 79-88, March.
    12. Lu, Minggen, 2010. "Spline-based sieve maximum likelihood estimation in the partly linear model under monotonicity constraints," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2528-2542, November.
    13. Keiji Takai, 2012. "Constrained EM algorithm with projection method," Computational Statistics, Springer, vol. 27(4), pages 701-714, December.
    14. Mengzhu Yu & Mingyue Du, 2022. "Regression Analysis of Multivariate Interval-Censored Failure Time Data under Transformation Model with Informative Censoring," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    15. Junlong Li & Chunjie Wang & Jianguo Sun, 2012. "Regression analysis of clustered interval-censored failure time data with the additive hazards model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 1041-1050, December.
    16. Yanqin Feng & Ling Ma & Jianguo Sun, 2015. "Regression Analysis of Current Status Data Under the Additive Hazards Model with Auxiliary Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 118-136, March.
    17. Min Zhang & Marie Davidian, 2008. "“Smooth” Semiparametric Regression Analysis for Arbitrarily Censored Time-to-Event Data," Biometrics, The International Biometric Society, vol. 64(2), pages 567-576, June.
    18. Debashis Ghosh, 2004. "Nonparametric and semiparametric inference for models of tumor size and metastasis," The University of Michigan Department of Biostatistics Working Paper Series 1035, Berkeley Electronic Press.
    19. Audrey Boruvka & Richard J. Cook, 2015. "A Cox-Aalen Model for Interval-censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 414-426, June.
    20. Wang, Naichen & Wang, Lianming & McMahan, Christopher S., 2015. "Regression analysis of bivariate current status data under the Gamma-frailty proportional hazards model using the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 140-150.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:37:y:2010:i:2:p:338-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.