IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i2p399-407.html

A mixed effects log-linear model based on the Birnbaum–Saunders distribution

Author

Listed:
  • Desmond, A.F.
  • Cíntora González, Carlos L.
  • Singh, R.S.
  • Lu, Xuewen

Abstract

In lifetime data analysis and particularly in engineering reliability contexts, the Birnbaum–Saunders (BISA) density is often suggested as a suitable model; see Birnbaum and Saunders (1969), Mann et al. (1974), and Desmond (1985). A linear regression model, obtained from a logarithmic transformation of the response variable, is useful in studying the effect of covariates on the response variable; see Rieck and Nedelman (1991), Tsionas (2001) and Galea et al. (2004). In this paper, an extension of the log-linear regression model of Rieck and Nedelman (1991), which considers random effects, is introduced. From a Monte Carlo simulation study, the performance of various estimation and prediction methods are studied. The usefulness of the mixed log-linear model is stressed and compared to the pure fixed effects log-linear regression BISA model. The new model is used to analyze a real data set, for which a fixed effects model is inappropriate.

Suggested Citation

  • Desmond, A.F. & Cíntora González, Carlos L. & Singh, R.S. & Lu, Xuewen, 2012. "A mixed effects log-linear model based on the Birnbaum–Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 399-407.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:399-407
    DOI: 10.1016/j.csda.2011.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002842
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhihui & Desmond, A.F. & Lu, Xuewen, 2006. "Modified censored moment estimation for the two-parameter Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1033-1051, February.
    2. Ng, H. K. T. & Kundu, D. & Balakrishnan, N., 2003. "Modified moment estimation for the two-parameter Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 43(3), pages 283-298, July.
    3. Manuel Galea & Victor Leiva-Sanchez & Gilberto Paula, 2004. "Influence Diagnostics in log-Birnbaum-Saunders Regression Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(9), pages 1049-1064.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lemonte, Artur J., 2013. "A new extended Birnbaum–Saunders regression model for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 34-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lemonte, Artur J. & Cribari-Neto, Francisco & Vasconcellos, Klaus L.P., 2007. "Improved statistical inference for the two-parameter Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4656-4681, May.
    2. Mahdi Teimouri, 2023. "Fast Bayesian Inference for Birnbaum-Saunders Distribution," Computational Statistics, Springer, vol. 38(2), pages 569-601, June.
    3. Li, Ai-Ping & Chen, Zhao-Xia & Xie, Feng-Chang, 2012. "Diagnostic analysis for heterogeneous log-Birnbaum–Saunders regression models," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1690-1698.
    4. Xie, Feng-Chang & Wei, Bo-Cheng, 2007. "Diagnostics analysis for log-Birnbaum-Saunders regression models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4692-4706, May.
    5. Li, Ai-Ping & Xie, Feng-Chang, 2012. "Diagnostics for a class of survival regression models with heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4204-4214.
    6. Wang, Bing Xing, 2012. "Generalized interval estimation for the Birnbaum–Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4320-4326.
    7. Barreto, Larissa Santana & Cysneiros, Audrey H.M.A. & Cribari-Neto, Francisco, 2013. "Improved Birnbaum–Saunders inference under type II censoring," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 68-81.
    8. Kalanka P. Jayalath, 2024. "Improved Bayesian Inferences for Right-Censored Birnbaum–Saunders Data," Mathematics, MDPI, vol. 12(6), pages 1-14, March.
    9. Leiva, Victor & Barros, Michelli & Paula, Gilberto A. & Galea, Manuel, 2007. "Influence diagnostics in log-Birnbaum-Saunders regression models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5694-5707, August.
    10. N. Balakrishnan & Xiaojun Zhu, 2015. "Inference for the bivariate Birnbaum–Saunders lifetime regression model and associated inference," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 853-872, October.
    11. Xiao, Qingchu & Liu, Zaiming & Balakrishnan, N. & Lu, Xuewen, 2010. "Estimation of the Birnbaum-Saunders regression model with current status data," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 326-332, February.
    12. Kalanka P. Jayalath, 2021. "Fiducial Inference on the Right Censored Birnbaum–Saunders Data via Gibbs Sampler," Stats, MDPI, vol. 4(2), pages 1-15, May.
    13. Xu, Ancha & Tang, Yincai, 2011. "Bayesian analysis of Birnbaum-Saunders distribution with partial information," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2324-2333, July.
    14. Xu Guo & Hecheng Wu & Gaorong Li & Qiuyue Li, 2017. "Inference for the common mean of several Birnbaum–Saunders populations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 941-954, April.
    15. Xu, Ancha & Tang, Yincai, 2010. "Reference analysis for Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 185-192, January.
    16. Filidor Vilca & Caio L. N. Azevedo & N. Balakrishnan, 2017. "Bayesian inference for sinh-normal/independent nonlinear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 2052-2074, August.
    17. Zhang, Mimi & Hu, Qingpei & Xie, Min & Yu, Dan, 2014. "Lower confidence limit for reliability based on grouped data using a quantile-filling algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 96-111.
    18. Lemonte, Artur J. & Ferrari, Silvia L.P. & Cribari-Neto, Francisco, 2010. "Improved likelihood inference in Birnbaum-Saunders regressions," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1307-1316, May.
    19. Artur J. Lemonte & Alexandre G. Patriota, 2011. "Influence diagnostics in Birnbaum--Saunders nonlinear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 871-884, February.
    20. Robert G. Aykroyd & Víctor Leiva & Carolina Marchant, 2018. "Multivariate Birnbaum-Saunders Distributions: Modelling and Applications," Risks, MDPI, vol. 6(1), pages 1-25, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:399-407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.