IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i10p2949-2962.html
   My bibliography  Save this article

Estimators of error covariance matrices for small area prediction

Author

Listed:
  • Berg, Emily J.
  • Fuller, Wayne A.

Abstract

Prediction for the mixed model requires estimates of covariance matrices. There is often a direct estimate of the “within area” covariance matrix, and for survey samples this is an estimate of the sampling covariance matrix. The estimated covariance matrix may have large sampling variance, suggesting parametric modeling for the matrix. The model can play a role at various points in the construction of predictions for proportions for small areas. Simulations demonstrate that efficiency for predictions is improved by using a model for the covariance matrix in the estimator of mean parameters and in constructing the coefficients in the predictor.

Suggested Citation

  • Berg, Emily J. & Fuller, Wayne A., 2012. "Estimators of error covariance matrices for small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2949-2962.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2949-2962
    DOI: 10.1016/j.csda.2012.02.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312001120
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Junyuan & Fuller, Wayne A., 2003. "The Mean Squared Error of Small Area Predictors Constructed With Estimated Area Variances," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 716-723, January.
    2. Li-Chun Zhang & Raymond L. Chambers, 2004. "Small area estimates for cross-classifications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 479-496.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2949-2962. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.